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Abstract
A ‘Galois quantum system’ in which the position and momentum take values
in the Galois field GF(p�) is considered. It is comprised of �-component
systems which are coupled in a particular way and is described by a certain
class of Hamiltonians. Displacements in the GF(p�) × GF(p�) phase space
and the corresponding Heisenberg–Weyl group are studied. Symplectic
transformations are shown to form the Sp(2,GF(p�)) group. Wigner and Weyl
functions are defined and their properties are studied. Frobenius symmetries,
which are based on Frobenius automorphisms in the theory of Galois fields,
are a unique feature of these systems (for � � 2). If they commute with the
Hamiltonian, there are constants of motion which are discussed. An analytic
representation in the �-sheeted complex plane provides an elegant formalism
that embodies the properties of Frobenius transformations. The difference
between a Galois quantum system and other finite quantum systems where the
position and momentum take values in the ring [Zp]� is discussed.
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1. Introduction

Quantum mechanics is usually studied in the context of the harmonic oscillator where position
and momentum take values in R (real numbers). In this case the position–momentum phase
space is R×R. Various functions in phase space (e.g., Wigner and Weyl functions) have been
shown to provide a deep description of the system. There is an important class of transforms
in this phase space which includes Fourier transforms, displacements and symplectic Sp(2,R)
transforms. Their properties are intimately related to the powerful properties of the Wigner
and Weyl functions. In particular, symplectic transformations play an important role in areas
like quantum tomography, Bogoliubov transformations and their applications to superfluidity
and superconductivity, etc.

Quantum mechanics on a circle S is also an important area, which has applications in
Aharonov–Bohm phenomena, mesoscopic rings, etc. In this case the momentum takes values
in Z (the integers), and the phase space is S × Z.

In both the above cases the Hilbert space of the system is infinite dimensional. We now
consider systems where the position and momentum take values in Zq (the integers modulo
q). In this case the Hilbert space is q dimensional, and the phase space is the toroidal lattice
Zq × Zq . When we develop a phase-space formalism for this system, which is analogous
to the harmonic oscillator, we encounter difficulties. We easily define Fourier transform and
displacements in Zq × Zq . The difficulties appear in symplectic transformations (and related
concepts like quantum tomography). The root of these difficulties is that Zq is, in general, a
ring. Consequently, the Zq × Zq is a set of points with no geometrical structure. Therefore
the phase-space formalism in these systems is less powerful than in a harmonic oscillator.

All these difficulties disappear, when q is equal to a prime number p. In this case, Zp is a
field, inverses exist (i.e., division is well defined) and the Zp×Zp is a finite geometry [1]. We
can define symplectic transformations and show that they form the Sp(2,Zp) group. Their
physical significance lies in the fact that the Zp×Zp phase space has a (discrete) isotropy, and
all results that are valid with respect to a pair of directions are also valid with respect to other
pairs of directions. One consequence of this is that we can define tomographic techniques
based on Radon transformations, which are analogous to similar techniques in R × R for
the harmonic oscillator. Therefore, the phase-space formalism in these systems is equally
powerful to the harmonic oscillator formalism.

Even more interesting is the case where q is equal to a power of a prime number (q = p�).
In this case the position and momentum take values in the Galois field GF(p�) [2], and for this
reason we call them Galois quantum systems (or G-systems). Here symplectic transformations
are also well defined and form the Sp(2,GF(p�)) group. In addition to that we have an extra
symmetry, which is absent in the harmonic oscillator case and it is trivial in the finite case with
q = p. It is based on Frobenius automorphisms in Galois fields, and we call them Frobenius
symmetries. Due to this extra symmetry, the phase-space formalism in Galois systems is
more powerful than in a harmonic oscillator. This is due to the fact that although in general,
lattices have less symmetry than the continuum; when they are based on Galois fields they are
a geometry with more symmetry than the continuum.

There are various other problems which lead to Galois quantum systems. One is
the problem of mutually unbiased bases, which has applications to quantum information
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processing [3–14]. The number of such bases in a q-dimensional Hilbert space cannot exceed
q +1; and when q is the power of a prime, the number of such bases is equal to q +1. Related is
the ‘mean king’s problem’ which has been studied in [15–18]. Applications of these ideas to
positive operator valued measures have been discussed in [19, 20]. Applications to quantum
coding have been discussed in [21, 22].

General finite quantum systems have been studied originally by Weyl [23] and Schwinger
[24], and later by many authors [25–39]. Related is also the mathematical work of [40]. We
have reviewed this work in [41]. We have explained there the importance of Galois quantum
systems and we have discussed simple examples where the dimension is a prime number p.
The purpose of the present review is to complement [41] with a discussion of systems with
dimension p�, where � � 2. The work applies algebraic concepts from field extension and
Galois theory to quantum mechanics. Special emphasis is given to Frobenius transformations
and the Galois group, which are based on related concepts in the subject of field extension, in
algebra. Physically, they are discrete symmetries, and for Hamiltonians which commute with
them, we get constants of motion. These symmetries are a unique feature of p�-dimensional
systems with � � 2.

Phase space methods in quantum mechanics are related to time-frequency methods in
signal processing which have been studied originally by Gabor [42]and by Ville [43] and later
by many authors [44]. These are also related to the general area of applied harmonic analysis.
Therefore the ideas of the present paper can be used in these contexts also. We note here that
early work about wavelets on Galois fields has been presented in [45].

In section 2 we present concepts from Galois theory in an applied form suitable for our
context. For example, we present labelling methods of the irreducible polynomials, for later
use. We also give the trace of the product of two elements of a Galois field, in terms of their
components. In section 3 we present very briefly the theory of finite quantum systems. This
has been reviewed in [41], and here we only present some basic concepts and explain the
notation.

In section 4 we introduce Galois quantum systems and explain the concept of Frobenius
subspaces. In section 5 we introduce Fourier transforms for Galois quantum systems and
explain their physical meaning. In section 6 we explain how a Galois quantum system with
position and momentum in GF(p�) can be viewed as a system comprised of �-component
systems which are p dimensional and which are coupled in a particular way. Only a special
class of Hamiltonians, which describe this particular coupling, can give the system Galois
structure.

In section 7 we discuss the Heisenberg–Weyl group of displacements in Galois systems.
In section 8 we discuss symplectic Sp(2,GF(p�)) transformations, Radon transforms and
quantum tomography [46–48]. In section 9 we study the semidirect product of the Heisenberg–
Weyl group of displacements by the group of symplectic transformations. This larger group
which we call T[GF(p�)] contains both displacements and symplectic transformations. Wigner
and Weyl functions, their properties and the related problem of quantum tomography are
studied in section 10.

It is very important to compare and contrast a Galois quantum system with position
and momentum in GF(p�) with a p�-dimensional system where the position and momentum
take values in the ring [Zp]�. We call the latter R-system and discuss it in section 11.
Different multiplication rules in GF(p�) and [Zp]� lead to different quantum systems. A clear
understanding of the difference between the two is essential for this work.

Frobenius transformations and the Galois group [49], which as we explained earlier are
unique symmetries in Galois systems with dimension p� with � � 2, and are presented
in section 12. Constants of motion, in systems with Hamiltonians that commute with the
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Frobenius transformations, are discussed in section 13. In section 14 we consider the semidirect
product of the T[GF(p�)] by the Galois group of Frobenius transformations and get a larger
group which contains Frobenius, displacements and symplectic transformations.

In the theory of Galois fields in algebra, the Galois group of Frobenius automorphisms
contains all automorphisms of GF(p�)which map the conjugates to each other. In our context
the Galois group of Frobenius transformations leave invariant the Frobenius subspaces. But
there are much more general transformations that leave invariant the Frobenius subspaces,
which we discuss in section 15.

In section 16 we present an analytic representation of Galois systems in the �-sheeted
complex plane. To each irreducible polynomial of order d, correspond d Galois conjugates
and this can be viewed as a kind of multivaluedness. This multivaluedness can be connected
to multivaluedness in Riemann surfaces. Work in this direction in a very different context has
been presented in [50] and here we show this explicitly in our context [49]. The Frobenius
transformations and their properties are expressed in an elegant way in the language of analytic
functions, on Riemann surfaces.

In section 17 we discuss a physical implementation of Galois systems with spins. We
conclude in section 18 with a discussion of our results.

2. Galois fields

Let Zq be the ring of integers modulo q. In the special case that q is a prime number p the
Zp is a field. Field extensions lead to larger fields and below we use the Galois field GF(p�).
Some theorems in Galois theory are valid only for p �= 2 and this is the case considered here.
Quantum systems corresponding to the p = 2 case have been discussed in [6, 9].

An important aspect of Galois theory is the relation of a field with its subfields. If d is a
divisor of � (which we denote as d|�) the GF(pd) is a subfield of GF(p�). In this case Zp is a
subfield of GF(pd); and GF(pd) is a subfield of GF(p�).

We denote as Zp[ε] the ring of polynomials with coefficients in Zp. Let P(ε) be an
irreducible polynomial of degree �:

P(ε) ≡ c0 + c1ε + · · · + c�−1ε
�−1 + ε�; cλ ∈ Zp. (1)

The quotient Zp[ε]/(P (ε)) provides a representation of the field GF(p�). Its elements can be
written as polynomials

α = α0 + α1ε + · · · + α�−1ε
�−1; αλ ∈ Zp, (2)

which are defined modulo the irreducible polynomial P(ε). We refer to αλ as components of
α with respect to the {1, ε, . . . , ε�−1} basis. Below we will introduce other bases also. We
note that different irreducible polynomials P(ε) of the same degree �, lead to isomorphic finite
fields.

2.1. Frobenius automorphism and Galois groups

The Frobenius map

σ(α) = αp; σ � = 1 (3)

defines an automorphism in GF(p�). The α, αp, . . . , αp
�−1

are Galois conjugates and

αp
� = α. (4)

Elements in the subfield Zp of GF(p�) are self-conjugates:

α ∈ Zp → αp = α. (5)
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Therefore the Frobenius automorphism maps the Galois conjugates to each other and leaves
all elements of Zp fixed. The

Gal[GF(p�)/Zp] = {1, σ, . . . , σ �−1} (6)

form the Galois group which is a cyclic group of order �. It comprises all automorphisms of
GF(p�) which leave the elements of the subfield Zp fixed.

More generally, we consider a subfield GF(pd) of GF(p�) (where d|�). Elements of
GF(pd) satisfy the relation

α ∈ GF(pd)→ αp
d = α. (7)

In this case

Gal[GF(p�)/GF(pd)] = {1, σ d, . . . , σ �−d} (8)

is a cyclic group of order �/d and is a subgroup of Gal[GF(p�)/Zp]. It comprises all
automorphisms of GF(p�) which leave the elements of the subfield GF(pd) fixed.

The product

f (y) ≡ (y − α)(y − αp) · · · (y − αpd−1)
(9)

involves all Galois conjugates and is an irreducible polynomial of degree d in Zp[y]. Such a
polynomial labels a set of d Galois numbers which are all conjugate to each other.

The number of irreducible polynomials of degree d in Zp[y] is

n(d, p) = 1

d

∑
e|d
µ(e)pd/e, (10)

where µ is the Möbius µ-function and the summation is over all e which are divisors of d
(starting with e = 1 and finishing with e = d). In the special case d = 1 we get:

n(1, p) = p. (11)

For later use we introduce below two labelling methods of the irreducible polynomials.

2.2. First labelling method of the irreducible polynomials

We label the irreducible polynomials in Zp[y] with two indices. The first index d is the degree
of the polynomial. The second index κ labels all irreducible polynomials of degree d in Zp[y]
and takes values from 1 to n(d, p). In this labelling method the irreducible polynomials will
be denoted as fdκ(y).

The product of all distinct irreducible polynomials in Zp[y] of degree d, where d is a
divisor of �, is

∏
d|�

n(d,p)∏
κ=1

fdκ(y) = yp� − y. (12)

The total number of irreducible polynomials entering in this relation is∑
d|�
n(d, p) ≡ M(�, p). (13)

Counting the degrees of these polynomials we show that∑
d|�
dn(d, p) = p�. (14)
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We next consider a subfield GF(pd) of GF(p�) (where d|�). The analogue of
equation (12) is in this case

∏
e|d

n(e,p)∏
κ=1

feκ(y) = ypd − y. (15)

The yp
d − y is a divisor of yp

� − y.

2.3. Second labelling method of the irreducible polynomials

Here we introduce a one-to-one map between the pair of indices (d, κ) and a single index N.
This provides another labelling method of the irreducible polynomials as

fN(y) ≡ fdκ(y); N = 1, . . . ,M(�, p). (16)

We first write all divisors of � in ascending order as

d1 = 1 < d2 < · · · < dq�−1 < dq� = �, (17)

where q� denotes the number of divisors of �. We then define the w(�, d, p) as

w(�, d, p) =
∑
di<d

n(di, p); w(�, 1, p) = 0. (18)

The summation is over all divisors di of � which are smaller than d. We now define the index
N as

N = w(�, d, p) + κ. (19)

When N is given, we can calculate the corresponding (d, κ) by finding the largest di among
the divisors of �, such that the w(�, di, p) is smaller than N and then

d = di+1; κ = N − w(�, di, p). (20)

2.4. Labelling of the elements of GF(p�)

We label all elements in GF(p�) in a way that indicates the corresponding irreducible
polynomial fdκ(y). We take any of the d Galois conjugates corresponding to fdκ(y), and
denote it as m(d, κ, 1). We then denote the rest of them as

m(d, κ, ν) = [m(d, κ, 1)]p
ν−1; κ = 1, . . . , n(d, p); ν ∈ Zd . (21)

The index ν is cyclic and therefore starting from a different conjugate will simply label the
same elements as m(d, κ, ν + ν0), where ν0 is a constant.

We have seen in equations (19) and (20) that there is one-to-one map between the pair of
indices (d, κ) and the index N. Therefore an alternative labelling scheme of the elements of
GF(p�) is

m(d, κ, ν) = m(N, ν). (22)
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2.5. Trace

The trace of an element depends on the field extension that we consider. We use the notation Tr
for the trace in the extension from Zp to GF(p�); the notation Trd for the trace in the extension
from Zp to GF(pd); and the notation Tr�/d for the trace in the extension from GF(pd) to
GF(p�) (where d|�).

The trace of α in GF(p�) is defined as the sum of all its conjugates:

Tr(α) = α + αp + αp
2

+ · · · + αp
�−1; Tr(α) ∈ Zp; α ∈ GF(p�). (23)

All conjugates have the same trace. The fact that Tr(α) belongs to Zp shows that
[Tr(α)]p = Tr(α).

The Trd of α in GF(pd) is defined as

Trd(α) = α + αp + αp
2

+ · · · + αp
d−1; Trd(α) ∈ Zp; α ∈ GF(pd). (24)

The Tr�/d of α in GF(p�) is defined as

Tr�/d(α) = α + αp
d

+ αp
2d

+ · · · + αp
�−d ; Tr�/d(α) ∈ GF(pd); α ∈ GF(p�). (25)

It can be shown that

Tr(α) = Trd [Tr�/d(α)]; α ∈ GF(p�). (26)

In the special case that α belongs to GF(pd) equation (26) reduces to

Tr(α) = �

d
Trd(α); α ∈ GF(pd). (27)

2.6. Trace and conjugates of Galois numbers in terms of their components

We introduce the following symmetric �× � matrices g with elements in Zp [47]:

gλκ ≡ Tr(ελ+κ); G ≡ g−1; κ, λ = 0, . . . , �− 1. (28)

The elements of these matrices do depend on the choice of the irreducible polynomial P(ε)
in equation (1); but different choices lead to isomorphic results. We explain below that the
inverse of the matrix (gλκ) does exist.

We used earlier the basis {1, ε, . . . , ε�−1} for the elements of GF(p�). We now introduce
the dual basis {Eκ}, as follows:

Eκ =
∑
λ

Gκλε
λ; Tr(εκEλ) = δκλ. (29)

Any α ∈ GF(p�) can be expressed in the two bases as

α =
�−1∑
λ=0

αλε
λ =

�−1∑
λ=0

αλEλ, (30)

where

αλ = Tr[αEλ]; αλ = Tr[αελ], (31)

where αλ are the dual components of α related to the αλ as

αλ =
∑
κ

Gλκακ; αλ =
∑
κ

gλκακ . (32)
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We express the trace of any product αβ in terms of their components:

Tr(αβ) =
∑
λ,κ

gλκαλβκ =
∑
λ,κ

Gλκαλβκ

=
∑
λ

αλβλ =
∑
λ

αλβλ. (33)

It is seen that the trace of αβ involves the components of α and the dual components of β; or
vice versa.

We can now show that the determinant of g is non-zero and therefore the g−1 exists. If
the determinant of g is zero, then there exist non-zero β such that Tr(αβ) = 0 for all α. But
then for an arbitrary γ ∈ GF(p�), we can choose α = γβ−1 and prove that Tr(γ ) = 0. This
contradicts a theorem which states that at least one element in a Galois field has non-zero
trace. Therefore the determinant of g is non-zero and the g−1 exists.

For the calculation of conjugates we introduce the �× � matrix C with elements in Zp as

εµp =
�−1∑
κ=0

εκCκµ; κ, µ = 0, . . . , �− 1. (34)

Its elements do depend on the choice of the irreducible polynomial P(ε) in equation (1); but
different choices lead to isomorphic results. The conjugates of an arbitrary number α are given
by

αp
λ =

∑
κ,µ

εκ(Cλ)κµαµ. (35)

It is easily seen that

C� = 1; Cκ0 = δ(κ, 0), (36)

where δ is the Kronecker delta.

2.7. Example

We consider the Galois field GF(9) and choose the irreducible polynomial P(ε) = ε2 + ε + 2.
In this case the irreducible polynomials are

f11(y) = y; f12(y) = y − 1; f13(y) = y − 2

f21(y) = y2 + 1; f22(y) = y2 + y + 2; f23(y) = y2 + 2y + 2.
(37)

The elements of GF(9) can be labelled using the first labelling method as follows:

m(1, 1, 1) = 0; m(1, 2, 1) = 1; m(1, 3, 1) = 2

m(2, 1, 1) = 1 + 2ε; m(2, 1, 2) = 2 + ε

m(2, 2, 1) = ε; m(2, 2, 2) = 2 + 2ε

m(2, 3, 1) = 1 + ε; m(2, 3, 2) = 2ε.

(38)

These can also be labelled using the second labelling method as follows:

m(1, 1) = 0; m(2, 1) = 1; m(3, 1) = 2

m(4, 1) = 1 + 2ε; m(4, 2) = 2 + ε

m(5, 1) = ε; m(5, 2) = 2 + 2ε

m(6, 1) = 1 + ε; m(6, 2) = 2ε.

(39)

The matrices g,G and C defined in equations (28) and (34) are in this case

g =
(−1 −1

−1 0

)
; G =

(
0 −1

−1 1

)
; C =

(
1 −1
0 −1

)
. (40)



R294 Topical Review

2.8. Additive characters

We use the general notation

�q(α) ≡ �αq = exp

[
i
2πα

q

]
; α ∈ Zq . (41)

In the special case q = p, we use the more special notation

ω(m) ≡ ωm = exp

(
i
2πm

p

)
; m ∈ Zp. (42)

We consider the following complex-valued function:

χ(α) = ω[Tr(α)]; χ(α)χ(β) = χ(α + β); α, β ∈ GF(p�), (43)

where χ(α) is an additive character in GF(p�). Taking into account equation (33) we show
that

χ(αβ) = ω[Tr(αβ)] = ω
[∑
λ,κ

gλκαλβκ

]
= ω

[∑
λ

αλβλ

]
= ω

[∑
λ

αλβλ

]
. (44)

We also show that
1

p�

∑
α∈GF(p�)

χ(αβ) = δ(β, 0); β ∈ GF(p�). (45)

This relation plays a very important role in Fourier transforms below. A more general relation
is

1

p�

∑
α∈GF(p�)

χ
(
αβ − αpλγ ) = δ(β, γ p�−λ) = δ(βpλ, γ )

. (46)

Above we have defined characters in GF(p�). In a similar way we can define characters
in the subfield GF(pd) (where d|�). We consider the complex-valued function:

χd(α) = ω[Trd(α)]; α ∈ GF(pd), (47)

where χd(α) is an additive character in GF(pd). Taking into account equation (26) we show
that for α ∈ GF(p�)

χ(α) = χd [Tr�/d(α)]; α ∈ GF(p�). (48)

When α ∈ GF(pd) this relation becomes

χ(α) = [χd(α)]
�/d; α ∈ GF(pd). (49)

We can easily extend these ideas to diagonal matrices with elements in GF(p�). We
consider the N ×N matrix

�ij = �iδ(i, j); �i ∈ GF(p�). (50)

It is easily seen that

�p
� = �. (51)

The matrix � can be written as

� = �0 +�1ε + · · · +��−1ε
�−1, (52)

where�λ are N ×N diagonal matrices with elements in Zp. We define the Galois trace of�
as

TrG� = � +�p + · · · +�p
�−1; [TrG�]p = TrG�. (53)
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The Galois trace is another N × N diagonal matrix with elements in Zp; and it is a different
concept from the ordinary trace of a matrix, which is a number. Taking into account
equation (33) we easily show that if � and � are two diagonal matrices with elements in
GF(p�) then

TrG(��) =
∑
λ,µ

gλµ�λ�µ. (54)

We can define the character of � which is another diagonal matrix with elements which are
complex numbers:

χ(�) = exp

(
i2π

p
TrG�

)
. (55)

3. Finite quantum systems

We consider a quantum system where position and momentum take values in Zq . An
orthonormal basis in this system consists of the position states |X ;m〉, where m ∈ Zq .
Here X is not a variable, it simply indicates position states. The Hilbert space H of this system
is q dimensional. The theory of these systems has been reviewed in [41]. Here we introduce
very briefly some basic concepts which are needed later and define the notation.

3.1. Fourier transform

The Fourier operator is a unitary operator defined as

F = q−1/2
∑
m,n∈Zq

�q(mn)|X ;m〉〈X ; n|; F4 = 1. (56)

Acting with the Fourier operator on the position states we get momentum states which form
another orthonormal basis

|P;m〉 = F |X ;m〉 = q−1/2
∑
n∈Zq

�q(mn)|X ; n〉. (57)

Here P is not a variable; it simply indicates momentum states.
Position and momentum operators Q̂ and P̂ are defined as

Q̂ =
∑
n∈Zq

n|X ; n〉〈X ; n|; P̂ =
∑
n∈Zq

n|P; n〉〈P; n|; P̂ = FQ̂F†. (58)

Since n are integers modulo q, the Q̂ and P̂ are defined modulo q1. However, below we will
use exponentials of these operators and they are single-valued.

3.2. Displacements in the Zq × Zq phase space

The position-momentum phase space of this system is the toroidal lattice Zq × Zq . In this
phase space, we define the displacement operators

Z(α) = �q(αQ̂) =
∑
n∈Zq

�q(nα)|X ; n〉〈X ; n|
(59)

X (β) = �q(−βP̂) =
∑
n∈Zq

�q(−nβ)|P; n〉〈P; n|; α, β ∈ Zq .



R296 Topical Review

Acting with these operators on position and momentum states we get

Z(α)|P;m〉 = |P;m + α〉; Z(α)|X ;m〉 = �q(αm)|X ;m〉
(60)

X (β)|P;m〉 = �q(−mβ)|P;m〉; X (β)|X ;m〉 = |X ;m + β〉.
The displacement operators obey the relations

X (β)Z(α) = Z(α)X (β)�q(−αβ); α, β ∈ Zq . (61)

General displacement operators are given by

D(α, β) = Z(α)X (β)�q(−2−1αβ). (62)

Multiplication of two such operators is given by

D(α1, β1)D(α2, β2) = D(α1 + α2, β1 + β2)�q[2
−1(α1β2 − α2β1)]. (63)

The operators D(α, β) form the Heisenberg–Weyl group.

4. Galois quantum systems

A Galois quantum system consists of �-component systems with p-dimensional Hilbert space
H. Its Hilbert space H is the tensor product

H = H ⊗ · · · ⊗ H. (64)

We use calligraphic letters for operators and states on the various p-dimensional Hilbert spaces
H, and ordinary letters for operators and states on the p�-dimensional Hilbert space H. We
stress from the outset that only special couplings between the component systems can give the
system ‘Galois structure’. This is explained later when we discuss Fourier transform and the
Hamiltonians of these systems.

The position states |X;m〉 in H, are by definition

|X;m〉 ≡ |X ;m0〉 ⊗ · · · ⊗ |X ;m�−1〉; m = m0 +m1ε + · · · +m�−1ε
�−1, (65)

where m ∈ GF(p�) and m0, . . . , m�−1 ∈ Zp.

4.1. Frobenius subspaces

We consider the following d-dimensional subspace of H:

Hdκ = span{|X;m(d, κ, 1)〉, |X;m(d, κ, 2)〉, . . . , |X;m(d, κ, d)〉}. (66)

This space is spanned by all position states labelled with Galois conjugate numbers. There
is one-to-one map between the ‘Frobenius subspaces’ Hdκ and the irreducible polynomials
fdκ(y) corresponding to these conjugates. The indices of Hdκ indicate the corresponding
irreducible polynomial. There are M(�, p) Frobenius subspaces (see equation (13)) and their
direct sum is the space H.

We have introduced earlier a second method of labelling irreducible polynomials where
the indices (d, κ) are replaced with the index N. The one-to-one map between the two has
been given in equations (19) and (20). With this notation equation (66) can be rewritten as

HN = span{|X;m(N, 1)〉, |X;m(N, 2)〉, . . . , |X;m(N, d)〉}. (67)

We call πdκ (or πN) the projection operators to the spaces Hdκ .

πdκπd ′κ ′ = δ(d, d ′)δ(κ, κ ′);
∑
d,κ

πdκ = 1. (68)
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As an example, we consider a Galois quantum system where position and momentum take
values in GF(9). For calculations we choose the irreducible polynomial P(ε) = ε2 + ε + 2.
Taking into account equations (38) and (39) we see that the Frobenius subspaces are

H11 = H1 = {|X; 0〉}
H12 = H2 = {|X; 1〉}
H13 = H3 = {|X; 2〉}
H21 = H4 = span{|X; 1 + 2ε〉, |X; 2 + ε〉}
H22 = H5 = span{|X; ε〉, |X; 2 + 2ε〉}
H23 = H6 = span{|X; 1 + ε〉, |X; 2ε〉}.

(69)

We have used here both labelling methods.

4.2. Gd -subsystems

We consider a Galois subsystem where the position and momentum take values in the subfield
GF(pd), where d|�. Its Hilbert space is a pd -dimensional subspace of H which we denote
as Hd . We call it Gd -subsystem. An example is the G1-subsystem where the position and
momentum take values in the subfield Zp.

We call �d the projection operator to the subspace Hd . An important aspect of
Galois theory is the relationship of a field with its subfields, and in the present context
we discuss throughout the paper the relationship between the formalism in the G-system and
the corresponding formalism in the Gd -subsystem.

It is easily seen that

Hd =
⊕
e|d

n(e,p)⊕
κ=1

Hdκ =
⊕
e|d

⊕
N

HN; N = w(�, e, p) + 1, . . . , w(�, e, p) + n(e, p).

(70)

In the special case d = 1 the space H1 is p dimensional and is spanned by position states
labelled with integers in Zp. In the other extreme special case d = � it is clear that H� = H .

A direct consequence of equation (70) is that

�d =
∑
e|d

n(e,p)∑
κ=1

πeκ =
∑
e|d

w(�,e,p)+n(e,p)∑
N=w(�,e,p)+1

πN. (71)

Also if e is a divisor of d then

e|d → �e�d = �e. (72)

5. Fourier transform

The Fourier transform in a Galois quantum system is given in terms of the additive characters
of equation (43) as

F = (p�)−1/2
∑

m,n∈GF(p�)

χ(mn)|X;m〉〈X; n|

= (p�)−1/2
∑
mλ,nκ

ω
(∑

gλκmλnκ

)
|X ;m0〉〈X ; n0| ⊗ · · · ⊗ |X ;m0〉〈X ; n0|. (73)
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The non-diagonal terms of gij describe the coupling between the (i, j) components. This
is also seen later in the Hamiltonian of the system which is a function of the position and
momentum operators, or equivalently of the position and Fourier operators.

There is some analogy between this system and a system of � coupled harmonic oscillators,
but there are two important differences. The first is that here we cannot diagonalize the matrix
g (because it has elements in Zp). The second is that here the matrix g is not arbitrary, it
is intimately related to Galois theory through equation (28). Only a very specific coupling
between the components of the system, described by the matrix g of equation (28), gives it
the Galois structure.

If we consider an arbitrary matrix g (with elements in Zp) we will get a coupled finite
quantum system which is not a Galois quantum system. Its position and momentum take
values in the ring [Zp]� ≡ Zp × · · · × Zp and we call it the R-system. This system does not
have the extra properties that distinguish a Galois quantum system from other finite quantum
systems (finite geometry as phase space, symplectic transformations, quantum tomography,
Frobenius transformations, etc). Later, we consider an R-system with Fourier transform given
by equation (73) with g = 1. We compare and contrast the properties of R-systems with those
of G-systems.

Acting with F on position states we get momentum states in G-systems:

|P ;m〉 = F |X;m〉 = F [|X ;m0〉 ⊗ · · · ⊗ |X ;m�−1〉]
= |P;m0〉 ⊗ · · · ⊗ |P;m�−1〉. (74)

The dual componentsmλ of m enter in the component momentum states, while the components
mλ enter in the component position states of equation (65).

We can show that

F 4 = 1. (75)

This implies that the eigenvalues of F are 1, i,−1,−i. We call ηr the orthogonal projectors
to the eigenspaces corresponding to the various eigenvalues of F. Then

F = η0 + iη1 − η2 − iη3
(76)

ηrηs = ηrδ(r, s); η0 + η1 + η2 + η3 = 1; r, s = 0, 1, 2, 3.

The projectors ηr can be expressed in terms of the Fourier operator as

ηr = 1
4 [1 + (i−rF ) + (i−rF )2 + (i−rF )3]; r = 0, 1, 2, 3. (77)

5.1. Position and momentum operators

The position operator is

Q̂ =
∑
m

m|X;m〉〈X;m| =
∑
λ

ελ[1 ⊗ · · · ⊗ Q̂λ ⊗ · · · ⊗ 1]. (78)

The momentum operator is given by

P̂ = FQ̂F † =
∑
m

m|P ;m〉〈P ;m| =
∑
λ

Eλ[1 ⊗ · · · ⊗ P̂λ ⊗ · · · ⊗ 1]

=
∑
λ,µ

Gλµε
µ[1 ⊗ · · · ⊗ P̂µ ⊗ · · · ⊗ 1]. (79)

It involves the Fourier transform of equation (73) and the special coupling associated with the
off-diagonal elements of the matrix g, which we discussed earlier. Consequently, functions of
the position and momentum operators Q̂ and P̂ :

ϕ = ϕ(Q̂, P̂ ) = ϕ(Q̂, F Q̂F †) (80)
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embody this particular coupling and can be used in the description of Galois systems. More
general functions of the � positions Q̂λ and the � momenta P̂λ

ϕ′ = ϕ′(Q̂0, P̂0; . . . ; Q̂�−1, P̂�−1) (81)

describe general coupling between the component systems, and are suitable for R-systems.
We discuss this point further below, in connection with the Hamiltonians.

The eigenvalues of Q̂ and P̂ are elements of GF(p�) and their characteristic equation is

Q̂
p� = Q̂; P̂

p� = P̂ . (82)

We note that there are difficulties in practical calculations that involve the matrices Q̂ and
P̂ . For example, if we want to change basis, we need to define multiplication of elements of
GF(p�) with complex numbers.

The Galois traces of these operators are defined as (see equation (53)):

TrGQ̂ = Q̂ + Q̂
p

+ · · · + Q̂
p�−1

=
∑
m

(Trm)|X;m〉〈X;m|
(83)

[TrGQ̂]p = TrGQ̂

and similarly for TrGP̂ . In practical calculations, they also have similar problems. For
example, if we want to change basis, we need to multiply integers defined modulo p, with
complex numbers. This leads to multivaluedness and it needs to be handled very carefully. All
these difficulties disappear if we work with characters of these matrices which are matrices of

complex numbers. We explain this below in examples that involve the Q̂
2

and P̂
2

which will
be used later in Hamiltonians for these systems.

We consider the matrix Q̂
2

which in the basis of position states is a p� × p� diagonal

matrix with elements in GF(p�). The Galois trace of Q̂
2

is a diagonal p� × p� matrix with
elements in Zp, and using equation (54) we show that

TrGQ̂
2 =

∑
m

(Trm2)|X;m〉〈X;m|

=
∑
λ,µ∈Z�

gλµ1 ⊗ · · · ⊗ Q̂λ ⊗ · · · ⊗ Q̂µ ⊗ · · · ⊗ 1. (84)

The diagonal gλλ are related to terms of the type 1 ⊗ · · · ⊗ Q̂2
(λ) ⊗ · · · ⊗ 1. The non-diagonal

gλµ are related to the coupling between the components in these systems. We stress again that
g is not an arbitrary matrix, it is intimately related to Galois theory through equation (28). The

character of Q̂
2

is given by

χ(Q̂
2
) = exp

(
i2π

p
TrGQ̂

2
)

=
∑
m

χ(m2)|X;m〉〈X;m|. (85)

It is a diagonal p� × p� matrix with complex elements and it is free of the problems that we
mentioned above. We can now change basis if we wish, without any difficulty. For example,
we can go to the basis of momentum states with the Fourier transform:

χ(Q̂
2
) =

∑
k,n

γkn|P ; k〉〈P ; n|
(86)

γkn =
∑

m∈GF(p�)

χ(m2)χ [m(n− k)] = χ [2−2(n− k)2]G(1),

where

G(A) =
∑

r∈GF(p�)

χ(Ar2) (87)
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is the Gauss sum related to GF(p�) [51].

In a similar way we can define in the basis of momentum states the Galois trace of P̂
2

TrGP̂
2 =

∑
m

(Trm2)|P ;m〉〈P ;m|

=
∑
λ,µ∈Z�

Gλµ1 ⊗ · · · ⊗ P̂λ ⊗ · · · ⊗ P̂µ ⊗ · · · ⊗ 1 (88)

and the character

χ(P̂
2
) = Fχ(Q̂2

)F † = exp

(
i2π

p
TrGP̂

2
)

=
∑
m

χ(m2)|P ;m〉〈P ;m|. (89)

For later use we consider the

χ(Q̂
2
)χ(P̂

2
) = G(1)

∑
k,n

χ [2−2(n− k)2 + n2]|P ; k〉〈P ; n|
(90)

χ(P̂
2
)χ(Q̂

2
) = G(1)

∑
k,n

χ [2−2(n− k)2 + k2]|P ; k〉〈P ; n|.

Their analogues in the harmonic oscillator context are exp(iαx2) exp(iβp2) and
exp(iαx2) exp(iβp2) (where x and p are here harmonic oscillator position and momentum
operators, correspondingly). We can find relations between them using the harmonic oscillator
commutation relation [x, p] = i1. As we explain below, in the present context the Heisenberg–
Weyl group is discrete, there is no Lie algebra and the commutator [Q,P ] plays no important

role. Consequently, there is no simple relation between χ(Q̂
2
)χ(P̂

2
) and χ(P̂

2
)χ(Q̂

2
).

5.2. Fourier transform in Gd -subsystems

The Hilbert space Hd is spanned by the position states |X;m〉, where m ∈ GF(pd). We also
use the notation |Xd;m〉 for them:

|Xd;m〉 = |X;m〉; m ∈ GF(pd). (91)

The Fourier transform Fd in Hd is defined in terms of the additive characters of equation (47)
as

Fd = (pd)−1/2
∑

m,n∈GF(pd )

χd(mn)|X;m〉〈X; n|; F 4
d = �d, (92)

where �d is the projection operator to the subspace Hd . The momentum states |Pd;m〉 are
given by

|Pd;m〉 = Fd |Xd;m〉 = (pd)−1/2
∑

n∈GF(pd )

χd(mn)|X; n〉; m ∈ GF(pd) (93)

and they are different from the corresponding momentum states |P ;m〉. Indeed the state
|Pd;m〉 belongs entirely in the space Hd , while a part of the state |P ;m〉 is outside Hd :

(1 −�d)|P ;m〉 = p−�/2 ∑
n

χ(mn)|X; n〉; n ∈ GF(p�)− GF(pd); m ∈ GF(pd).

(94)

The matrix �dF�d is different from the matrix Fd . We calculate the matrix elements of
these two matrices and using equation (49) we find that for m, n ∈ GF(pd):

〈X;m|�dF�d |X; n〉 = [〈X;m|Fd |X; n〉]�/d; m, n ∈ GF(pd). (95)
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5.3. Fourier transform in the Frobenius subspaces

For later use we introduce a Fourier transform within the d-dimensional Frobenius subspace
Hdκ as

Fdκ = d−1/2
∑
ν,µ∈Zd

�d(νµ)|X;m(d, κ, ν)〉〈X;m(d, κ, µ)|; F4
dκ = πdκ . (96)

Acting with it on the states |X;m(d, κ, ν)〉 we get the states

|P;m(d, κ, µ)〉〉 = Fdκ |X;m(d, κ, µ)〉 = d−1/2
∑
ν∈Zd

�d(νµ)|X;m(d, κ, ν)〉. (97)

We might call them ‘momentum states with respect to the Fdκ Fourier transform’. We stress
that the |P;m(d, κ, µ)〉〉 are different from the states |P ;m〉. In the special case d = 1, we
get

F1κ = π1κ; |P;m(1, κ, 1)〉〉 = |X;m(1, κ, 1)〉〉. (98)

In the example related to GF(9) considered in equations (38) and (69) we get:

|P;m(1, 1, 1)〉〉 = |X; 0〉
|P;m(1, 2, 1)〉〉 = |X; 1〉
|P;m(1, 3, 1)〉〉 = |X; 2〉
|P;m(2, 1, 1)〉〉 = 2−1/2 [−|X; 1 + 2ε〉 + |X; 2 + ε〉]
|P;m(2, 1, 2)〉〉 = 2−1/2 [|X; 1 + 2ε〉 + |X; 2 + ε〉]
|P;m(2, 2, 1)〉〉 = 2−1/2 [−|X; ε〉 + |X; 2 + ε〉]
|P;m(2, 2, 2)〉〉 = 2−1/2 [|X; ε〉 + |X; 2 + ε〉]
|P;m(2, 3, 1)〉〉 = 2−1/2 [−|X; 1 + ε〉 + |X; 2ε〉]
|P;m(2, 3, 2)〉〉 = 2−1/2 [|X; 1 + ε〉 + |X; 2ε〉] .

(99)

6. Hamiltonians of Galois quantum systems

The Hamiltonian of a Galois quantum system is

h = h(Q̂, P̂ ) = h(Q̂, F Q̂F †). (100)

It is a function of Q̂ and P̂ which embody Galois theory as we explained earlier. In other
words, h is a function of Q̂ and F and it involves the special coupling associated with the
Fourier transform of equation (73), which we discussed earlier. The Hamiltonian h is a very
special case of the more general Hamiltonian

h′ = h′(Q̂0, P̂0; . . . ; Q̂�−1, P̂�−1), (101)

which involves the arbitrary coupling between the � components of the system. This system
is not a Galois system, it is an R-system (discussed briefly later). Only the specialized class
of Hamiltonians of equation (100), which involves the Fourier transform of equation (73), can
give the system Galois structure.

As examples we consider the χ(Q̂
2
)χ(P̂

2
) and the χ(P̂

2
)χ(Q̂

2
) of equation (90). These

are complex matrices and their logarithms can be used as Hamiltonians of the system

hA = ln[χ(Q̂
2
)χ(P̂

2
)]; hB = ln[χ(P̂

2
)χ(Q̂

2
)]. (102)
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Table 1. The evolution operator [UA(1)]P (m, n) of equation (106) in the basis of momentum states
for a Galois quantum system which has position and momentum in GF(9). In the calculations we
choose the irreducible polynomial P(ε) = ε2 + ε + 2. In the table r = 1/3 andw = exp(i2π/3)/3.

0 ε 2ε 1 1 + ε 1 + 2ε 2 2 + ε 2 + 2ε

0 r r r r r r r r r

ε r r r w w w w∗ w∗ w∗

2ε r r r w∗ w∗ w∗ w w w

1 w w∗ r w∗ r w r w w∗

1 + ε r w w∗ w∗ r w w w∗ r

1 + 2ε w∗ r w w∗ r w w∗ r w

2 w r w∗ r w∗ w w∗ w r

2 + ε w∗ w r w∗ w r w∗ w r
2 + 2ε r w∗ w w r w∗ w∗ w r

The logarithm of a matrix is of course multivalued, and a choice has to be made which of these
describes the system (e.g., the principal matrix logarithm).

The evolution operator for the system is then

UA(t) = exp(ithA) = [χ(Q̂
2
)χ(P̂

2
)]t ; UB(t) = exp(ithB) = [χ(P̂

2
)χ(Q̂

2
)]t . (103)

A more general Hamiltonian is

hC = ln{[χ(Q̂2
)]σχ(P̂

2
)[χ(Q̂

2
)]1−σ }; 0 � σ � 1. (104)

All these Hamiltonians are analogues of the h = (x2 + p2)/2 of the harmonic oscillator.
Below (in equation (151)) we will act with displacement and symplectic transformations on
these Hamiltonians to get the analogue of the squeezed and displaced harmonic oscillator
h = α1x

2 + α2p
2 + α3xp + α4x + α5p.

6.1. Example

As a numerical example, we consider a Galois quantum system which has position and
momentum in GF(9). We choose the irreducible polynomialP(ε) = ε2 +ε+2. Equations (40),
(84) and (88) show that in this case

TrGQ̂
2 = −Q̂2 ⊗ 1 − 2Q̂ ⊗ Q̂ TrGP̂

2 = −2P̂ ⊗ P̂ + 1 ⊗ P̂2. (105)

We have calculated numerically the operators χ(Q̂
2
) and χ(P̂

2
) in the basis of momentum

states. For the Hamiltonian hA of equation (102), we present in table 1 the evolution operator
at t = 1:

[UA(1)]P (m, n) = 〈P ;m|UA(1)|P ; n〉 = 〈P ;m| exp(ihA)|P ; n〉. (106)

7. Displacements and the HW[GF(p�)] Heisenberg–Weyl group

Displacement operators in Galois systems are similar to those in equation (59) but they involve
the additive characters of equation (43):

Z(α) = ω[TrG(αQ̂)] =
∑

n∈GF(p�)

χ(αn)|X; n〉〈X; n|
(107)

X(β) = ω[−TrG(βP̂ )] =
∑

n∈GF(p�)

χ(−βn)|P ; n〉〈P ; n|; α, β ∈ GF(p�).
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The Z(α) and X(β) are p� × p� matrices with eigenvalues which are powers of ω. Therefore
they have at most p distinct eigenvalues (there is a large degeneracy). It is easily seen that

Z(α1)Z(α2) = Z(α1 + α2); X(β1)X(β2) = X(β1 + β2). (108)

These operators act on position and momentum states as follows:

Z(α)|P ;m〉 = |P ;m + α〉; Z(α)|X;m〉 = χ(αm)]|X;m〉 (109)

X(β)|P ;m〉 = χ(−mβ)]|P ;m〉; X(β)|X;m〉 = |X;m + β〉. (110)

Using them we show that

X(β)Z(α) = Z(α)X(β)χ(−αβ). (111)

General displacement in the GF(p�)× GF(p�) phase space is defined as

D(α, β) = Z(α)X(β)χ(−2−1αβ); [D(α, β)]† = D(−α,−β). (112)

We note that 2−1αβ is an element of GF(p�). We easily show that

D(α, β)D(γ, δ) = χ [2−1(αδ − βγ )]D(α + γ, β + δ). (113)

The displacement operators D(α, β)χ(γ ) form the Heisenberg–Weyl group HW[GF(p�)],
which has p3� elements. We note that in finite quantum systems there are no infinitesimal
displacements; the Heisenberg–Weyl group is finite; there is no Lie algebra; the role of the
position and momentum operators Q,P is limited, and the commutator [Q,P ] plays no
important role.

We can easily show that

FD(α, β)F † = D(β,−α). (114)

The matrix elements of the displacements operators are given by

〈X; n|D(α, β)|X;m〉 = χ(2−1αβ + αm)δ(n,m + β)
(115)

〈P ; n|D(α, β)|P ;m〉 = χ(−2−1αβ − βm)δ(n,m + α).

The displacement operators acting on H are expressed in terms of the displacement
operators D acting on the various components of the system as

D(α, β) = D(α0, β0)⊗ · · · ⊗ D(α�−1, β�−1). (116)

It is seen that the various subsystems are displaced by the corresponding dual components of
α and by the components of β. This is a consequence of the coupling between the components
in G-systems. Equation (116) should be compared and contrasted with the analogous for
R-systems given later (in equation (189)). Special cases of equation (116) are

X(εi) = 1 ⊗ · · · ⊗ 1 ⊗ X (1)⊗ 1 ⊗ · · · ⊗ 1
(117)

Z(Ei) = 1 ⊗ · · · ⊗ 1 ⊗ Z(1)⊗ 1 ⊗ · · · ⊗ 1.

The trace of D(α, β) is given by

1

p�
tr[D(α, β)] = δ(α, 0)δ(β, 0), (118)

where ‘tr’ denotes the usual trace of an operator.
An important property of the displacement operators is the ‘generalized resolution of the

identity’. For an arbitrary operator � we can show that

1

p�

∑
α,β∈GF(p�)

D(α, β)
�

tr�
[D(α, β)]† = 1. (119)
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This is easily proved by calculating the matrix elements of both sides using equation (115).
In the special case that � = |s〉〈s|, where |s〉 is any state in H, it reduces to the resolution of
the identity

1

p�

∑
α,β∈GF(p�)

|α, β; s〉〈α, β; s| = 1; |α, β; s〉 ≡ D(α, β)|s〉. (120)

The p2� states |α, β; s〉 form an overcomplete set of states in H, analogous to coherent states
in the harmonic oscillator context.

We next consider the displacement operators D(α, β)χ(γ ), where α, β, γ are in the
subfield GF(pd) (where d|�). It is easily seen that they form a subgroup of HW[GF(p�)] which
has p3d elements and which we denote as HW[GF(pd)]. We note that in this representation
of HW[GF(pd)] the displacement operators act on H and use the characters χ(α) of
equation (43).

We can have another representation of HW[GF(pd)], where the displacement operators act
only on the subspace Hd using the characters χd(α) of equation (47). We explain this briefly,
considering a Gd -subsystem described by the Hilbert space Hd . We define displacement
operators Dd(α, β) (where α, β ∈ GF(pd)) acting on Hd using the additive characters χd(α)
of equation (47). We do not present explicit formulas forDd(α, β) because they are analogous
to those above. We only mention a relation between the elements of the matrices Dd(α, β)
and the elements of the corresponding matrices�dD(α, β)�d . Using equation (49) we show
that for m, n, α, β ∈ GF(pd)

〈X;m|�dD(α, β)�d |X; n〉 = [〈X;m|Dd(α, β)|X; n〉]�/d; m, n, α, β ∈ GF(pd).

(121)

7.1. Displaced parity operators

The parity operator P(0, 0) around the origin is defined as

P(0, 0) = F 2; [P(0, 0)]2 = 1
(122)

P(0, 0)|X;m〉 = |X;−m〉; P(0, 0)|P ;m〉 = |P ;−m〉.
Using equation (76) we express P(0, 0) in terms of the projection operators A0 and A1 as

P(0, 0) = A0 − A1; A0 = η0 + η2; A1 = η1 + η3
(123)

ArAs = δ(r, s)ϑr; A0 + A1 = 1; r, s = 0, 1.

The displaced parity operators are defined as

P(α, β) = D(α, β)P (0, 0)[D(α, β)]† = D(2α, 2β)P (0, 0) = P(0, 0)[D(2α, 2β)]†
(124)

[P(α, β)]2 = 1.
These are related to the displacement operators through a two-dimensional Fourier transform

P(α, β) =
∑
γ,δ

D(γ, δ)χ(αδ − βγ ). (125)

We introduce the displaced projection operators A0(α, β) and A1(α, β) and express
P(α, β) in terms of them as

P(α, β) = A0(α, β)− A1(α, β); Ar (α, β) = D(α, β)Ar [D(α, β)]†; r = 0, 1.

(126)

We also combine equation (125) with equation (116) and express the displaced parity operator
P(α, β) in terms of displaced parity operators acting on the component systems:

P(α, β) = P(α0, β0)⊗ · · · ⊗ P(α�−1, β�−1). (127)
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8. Sp(2, GF(p�)) symplectic transformations and isotropy of the GF(p�) × GF(p�) phase
space

The GF(p�) × GF(p�) phase space of Galois quantum systems is a finite geometry and the
symplectic transformations S(q, r, s) perform ‘discrete rotations’ in it. Acting on the operators
Z and X which perform displacements along the momentum and position axes correspondingly,
they give new operators which perform displacements along new axes:

Z(q,r,s)(α) = S(q, r, s)Z(α)S†(q, r, s) = D(tα, sα)
(128)

X(q,r,s)(β) = S(q, r, s)X(β)S†(q, r, s) = D(rβ, qβ); q, r, s, t ∈ GF(p�).

We require that these transformations are unitary and preserve equation (111), i.e., that

X(q,r,s)(β)Z(q,r,s)(α) = Z(q,r,s)(α)X(q,r,s)(β)χ(−αβ). (129)

This leads to the constraint

qt − rs = 1. (130)

Therefore there are three independent variables q, r, s in these transformations and t =
q−1(rs + 1). For this reason we have omitted t in the notation. It is crucial here that the
variables belong to a field and therefore q−1 exists (for q �= 0).

In the case of general finite systems the variables belong to a ring and in general we
cannot solve the constraint of equation (130). Consequently, we cannot define symplectic
transformations which form a group in these systems. Intuitively, this is easily understood
because symplectic transformations are intimately connected to a (discrete) isotropy of the
phase space. In the general case, the phase space is a toroidal lattice with X and P as
‘important directions’, and with no geometrical structure. We can define displacements in it,
but not symplectic transformations. In Galois quantum systems the phase space is a finite
geometry, there is a finite number of ‘straight lines’ (finite sets of points) which are all equally
important, and we can define both displacements and symplectic transformations.

Symplectic transformations form a group, which we call Sp(2,GF(p�)). We first show
that the product of two such transformations is a transformation of the same type:

S(q2, r2, s2)S(q1, r1, s1) = S(ε, ζ, η)
ε = q1q2 + r1s2

(131)
ζ = q1r2 + r1q

−1
2 (1 + r2s2)

η = q2s1 + s2q
−1
1 (1 + r1s1).

We can also show that associativity holds; that identity element exists; and that inverses exist.
Below we give several formulas for the generic case that qt = 1 + rs �= 0. The cases

were qt = 1 + rs = 0 can easily be considered separately. For example, for q = t = 0 and
r = −s = 1 it is easily seen that

S(0, 1,−1) = F. (132)

Symplectic transformations act on general displacement operators as follows:

S(q, r, s)D(α, β)[S(q, r, s)]† = D(tα + rβ, sα + qβ); t = q−1(1 + rs). (133)

This is a generalization of equation (128).
Following [41], we give an analytic expression for the symplectic operators S(q, r, s).

Before we discuss the general case, we first study three special cases of operators which form
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three important subgroups of Sp(2,GF(p�)). The first one is the operators

S(ξ, 0, 0) =
∑

m∈GF(p�)

|X; ξm〉〈X;m| =
∑

m∈GF(p�)

|P ; ξ−1m〉〈P ;m|
(134)

S(ξ1, 0, 0)S(ξ2, 0, 0) = S(ξ1ξ2, 0, 0); [S(ξ, 0, 0)]p
� = S(ξ, 0, 0).

It is easily seen that they form a subgroup of Sp(2,GF(p�)). The fact that ξ belongs to
a field is crucial for the proof that these operators are unitary. We note that the relation
[S(ξ, 0, 0)]p

� = S(ξ, 0, 0) is true for all ξ in the field GF(p�). If however ξ belongs to a
subfield GF(pd) of GF(p�) (where d|�) then we can prove the stronger relation

ξ ∈ GF(pd)→ [S(ξ, 0, 0)]p
d = S(ξ, 0, 0). (135)

The second special case is the operators

S(1, ξ, 0) =
∑

m∈GF(p�)

χ(2−1ξm2)|X;m〉〈X;m|
(136)

S(1, ξ1, 0)S(1, ξ2, 0) = S(1, ξ1 + ξ2, 0); [S(1, ξ, 0)]p = 1.

These also form a subgroup of Sp(2,GF(p�)). The third special case is the operators

S(1, 0, ξ) =
∑

m∈GF(p�)

χ(−2−1ξm2)|P ;m〉〈P ;m|

S(1, 0, ξ1)S(1, 0, ξ2) = S(1, 0, ξ1 + ξ2); [S(1, 0, ξ)]p = 1 (137)

S(1, 0, ξ) = FS(1, ξ, 0)F †.

These also form a subgroup of Sp(2,GF(p�)). The general symplectic operator S(κ, λ, µ)
can be written in terms of them as

S(q, r, s) = S(1, 0, ξ1)S(1, ξ2, 0)S(ξ3, 0, 0)

ξ1 = qs(1 + rs)−1

(138)
ξ2 = rq−1(1 + rs)

ξ3 = q(1 + rs)−1.

Combining equations (135), (136), (137) and (138) we get

S(q, r, s) = p−�G(A)
∑

n,m∈GF(p�)

χ [(2q)−1(s−1 + r)n2 − s−1nm + (2s)−1qm2]|X; n〉〈X;m|
(139)

A = −2−1(1 + rs)−1qs,

where G(A) is the Gauss sum related to GF(p�) defined in equation (87).
We next consider the operators S(q, r, s), where q, r, s are in the subfield GF(pd) (where

d|�). These form a subgroup of Sp(2,GF(p�)) which we denote as Sp(2,GF(pd)). We note
that in this representation of Sp(2,GF(pd)) the symplectic operators act on H and use the
characters χ(α) of equation (43). We can have another representation of Sp(2,GF(pd)) with
the operators S(q, r, s) acting on the subspaceHd using the characters χd(α) of equation (47).
We made a similar comment earlier for the Heisenberg–Weyl group.

Symplectic transformations on finite fields from an abstract pure mathematics point of
view have been studied in [52–54].
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8.1. Radon transforms

An important property of the displacement operators is the ‘marginal relations’
1

p�

∑
α∈GF(p�)

D(α, β) = |X; 2−1β〉〈X;−2−1β|

1

p�

∑
β∈GF(p�)

D(α, β) = |P ; 2−1α〉〈P ;−2−1α| (140)

1

p�

∑
α,β∈GF(p�)

D(α, β) = P(0, 0).

These are proved by calculating the matrix elements of both sides using equation (115). These
are expressed here with respect to the X–P axes. Acting with the symplectic operator S(q, r, s)
on both sides of equation (140) we get analogous relations with respect to different axes in the
GF(p�)× GF(p�) phase space determined by the parameters (q, r, s):

1

p�

∑
ε,ζ

D(ε, ζ )δ(−sε + tζ, β) = |X(q, r, s); 2−1β〉〈X(q, r, s);−2−1β|
(141)

1

p�

∑
ε,ζ

D(ε, ζ )δ(qε − rζ, α) = |P(q, r, s); 2−1α〉〈P(q, r, s);−2−1α|.

Here we sum over all points on the lines −sε + tζ = β and qε − rζ = α. The left-hand sides
of these relations are Radon transforms in a finite geometry (the integration along a line in the
continuum, becomes here a summation). The ‘(q, r, s)-states’ are related to the original ones
through the symplectic transform

|X(q, r, s); γ 〉 = S(q, r, s)|X; γ 〉; |P(q, r, s); γ 〉 = S(q, r, s)|P ; γ 〉. (142)

In the special case that q = t = 1 and r = s = 0 equation (141) reduce to equation (140). It
is seen that the phase space is isotropic in the sense that equation (141) are valid not only for
the X–P axes, but for any axes.

In a similar way we can show the following relations for the displaced parity operator:
1

p�

∑
α∈GF(p�)

P (α, β) = |X;β〉〈X;β|

1

p�

∑
β∈GF(p�)

P (α, β) = |P ;α〉〈P ;α| (143)

1

p�

∑
α,β∈GF(p�)

P (α, β) = 1.

The right-hand sides of these equations are projection operators. Acting with the symplectic
operator S(q, r, s) on both sides of equation (143) we get analogous relations with respect to
different axes:

1

p�

∑
ε,ζ

P (ε, ζ )δ(−sε + tζ, β) = |X(q, r, s);β〉〈X(q, r, s);β|
(144)

1

p�

∑
ε,ζ

P (ε, ζ )δ(qε − rζ, α) = |P(q, r, s);α〉〈P(q, r, s);α|.

The left-hand sides of these relations are Radon transforms (studied in a general context in
[55]).
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The inverse Radon transform expresses the displacement operators (or the displaced parity
operators) in terms of the projection operators which appear on the right-hand side of equation
(144). We Fourier transform equation (144) and express the displacement operators in terms
of these projection operators as

D(rβ, qβ) =
∑

α∈GF(p�)

|P(q, r, s);α〉〈P(q, r, s);α|χ(−αβ)
(145)

D(tα, sα) =
∑

β∈GF(p�)

|X(q, r, s);β〉〈X(q, r, s);β|χ(αβ).

If we need the displaced parity operators, we perform the two-dimensional Fourier transform
of equation (125). These relations will be used below for quantum tomography in Galois
quantum systems.

9. The T[GF(p�)] group of displacements and symplectic transformations

The unitary operators

T (q, r, s;α, β, γ ) ≡ S(q, r, s)D(α, β)χ(γ ) = D(tα + rβ, sα + qβ)S(q, r, s)χ(γ )
(146)

t = q−1(1 + rs)

perform both displacements and symplectic transformations. It is easily seen that

T (q1, r1, s1;α1, β1, γ1)T (q2, r2, s2;α2, β2, γ2) = T (q, r, s;α, β, γ ), (147)

where

q = q1q2 + r2s1
r = q2r1 + r2q

−1
1 (1 + r1s1)

s = q1s2 + s1q
−1
2 (1 + r2s2)

(148)
α = α1q2 + α2 − β1r2

β = −α1s2 + β2 + β1(1 + r2s2)q
−1
2

γ = γ1 + γ2 + 2−1
[
α1α2s2 + α1β2q2 − β1β2r2 − β1α2(1 + r2s2)q

−1
2

]
.

The operators T (q, r, s;α, β, γ ) form a group which we denote as T[GF(p�)] and which is
sometimes called the Clifford group. The Heisenberg–Weyl group is a normal subgroup of
T[GF(p�)]. Indeed, using equation (133) we show that

T (q, r, s;α, β, γ )D(κ, λ)[T (q, r, s;α, β, γ )]† = D(tκ + rλ, sκ + qλ)χ(αλ− βκ)
(149)

t = q−1(1 + rs).

The Sp(2,GF(p�)) is also a subgroup of T[GF(p�)] and

Sp(2,GF(p�))
⋂

HW[GF(p�)] = {1}. (150)

Therefore, T[GF(p�)] is the semidirect product of the HW[GF(p�)] group of displacements
by the Sp(2,GF(p�)) group of symplectic transformations. Consequently, the quotient group
T[GF(p�)]/HW[GF(p�)] is isomorphic to the Sp(2,GF(p�)) group.

Acting with the operators T (q, r, s;α, β, γ ) on the Hamiltonians of equation (102) we
get more general ones:

h′
A = T (q, r, s;α, β, γ )hA[T (q, r, s;α, β, γ )]†

(151)
h′
B = T (q, r, s;α, β, γ )hB [T (q, r, s;α, β, γ )]†.

These are analogues of the squeezed and displaced harmonic oscillator described by the
Hamiltonian h = α1x

2 + α2p
2 + α3xp + α4x + α5p.
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10. Wigner and Weyl functions

10.1. Wigner functions

We consider an operator � and its matrix elements

�X(m, n) ≡ 〈X;m|�|X; n〉; �P (m, n) ≡ 〈P ;m|�|P ; n〉. (152)

The Wigner function of the operator � is defined as

W(�;α, β) = tr[�P(α, β)] = χ(2αβ)
∑
γ

χ(−2αγ )�X(γ, 2β − γ )

= χ(−2αβ)
∑
γ

χ(2βγ )�P (γ, 2α − γ ). (153)

If� is a Hermitian operator then the Wigner function is real; but for non-Hermitian operators
it is complex.

The Wigner function of a density matrix ρ is real, and it can be interpreted as a
pseudoprobability distribution of the particle in the position–momentum phase space. It
is pseudoprobability distribution because it can take negative values. Using Eq(126) we
can express the Wigner function of a density matrix ρ as the difference of two probabilities
σi(ρ;α, β):

W(ρ;α, β) = σ0(ρ;α, β)− σ1(ρ;α, β)
(154)

σi(ρ;α, β) ≡ tr[ρAi (α, β)]; σ0(ρ;α, β) + σ1(ρ;α, β) = 1.

This shows that −1 � W(ρ;α, β) � 1.
As an example, we consider the Fourier and displacement operators and we find

W(F ;α, β) = p−�/2χ(α2 + β2 + 4αβ)G(−1)
(155)

W(D(κ, λ);α, β) = χ(βκ − αλ),
where G(−1) is a Gauss sum for GF(p�), defined in equation (87). We also consider the
symplectic operators and using equation (139) we find

W(S(q, r, s);α, β) = p−�G(A)G(B)χ(�)
A = −2−1(1 + rs)−1qs; B = (2qs)−1 + (2q)−1r + s−1 + (2s)−1q (156)

� = s−12qβ2 + 2αβ − (4B)−1[s−12β(q + 1) + 2α]2.

We next consider the special case of operators � which can be written as a product

� = �0 × · · · ×��−1 (157)

of operators acting on the � components of the system. Taking into account equation (127) we
see that the corresponding Wigner function factorizes as

W(�;α, β) = W(�0;α0, β0) · · ·W(��−1;α�−1, β�−1). (158)

The Wigner function of the sum of two operators is simply the sum of the Wigner functions
of the two operators. The Wigner function of the product of two operators is given by the
Moyal star product, which in the present context is

W(�1) � W(�2) ≡ W(�1�2;α, β) = p−2�
∑

α1,β1,α2,β2

χ(2α2β1 − 2α1β2)

×W(�1;α + α1, β + β1)W(�2;α + α2, β + β2). (159)
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The Moyal star product has similar properties to the product of operators. For example, the
Moyal star product of two operators is (in general) non-commutative, and the Moyal star
product of three operators is associative.

An arbitrary operator � can be expanded in terms of the displaced parity operators with
the Wigner functions as coefficients

� = 1

p�

∑
α,β

W(�;α, β)P (α, β). (160)

This is proved by taking the matrix elements of both sides.

10.2. Radon transforms of Wigner functions

The properties of the Wigner function are intimately related to the properties of the displaced
parity operators. Indeed equation (143) lead to the following marginal properties of the Wigner
function with respect to the X − P axes:

1

p�

∑
α

W(�;α, β) = �X(β, β)
1

p�

∑
β

W(�;α, β) = �P (α, α)

1

p�

∑
α,β

W(�;α, β) = tr�.

(161)

We note that if � is a density matrix then the �X(β, β) and �P (α, α) are probabilities.
Similar properties can be proved with respect to different axes using equation (144):

1

p�

∑
ε,ζ

W(�; ε, ζ )δ(−sε + tζ, β) = �X(q,r,s)(β, β)

1

p�

∑
ε,ζ

W(�; ε, ζ )δ(qε − rζ, α) = �P(q,r,s)(α, α),
(162)

where �P(q,r,s)(α, α) and �X(q,r,s)(β, β) are the matrix elements of � with respect to the
(q, r, s)-states of equation (142):

�X(q,r,s)(m, n) ≡ 〈X(q, r, s);m|�|X(q, r, s); n〉 = 〈X;m|[S(q, r, s)]†�S(q, r, s)|X; n〉
�P(q,r,s)(m, n) ≡ 〈P(q, r, s);m|�|P(q, r, s); n〉 = 〈P ;m|[S(q, r, s)]†�S(q, r, s)|P ; n〉.

(163)

The left-hand side of equation (162) are the Radon transform of the Wigner function.
The Wigner function is the Fourier transform of the matrix elements �X(γ, 2β − γ ) and

�P (γ, 2α − γ ) in equation (153). Using Parceval’s theorem we get another set of marginal
properties that involves the absolute value of the Wigner function squared:

1

p�

∑
α

|W(�;α, β)|2 =
∑
γ

|�X(γ, 2β − γ )|2

1

p�

∑
β

|W(�;α, β)|2 =
∑
γ

|�P (γ, 2α − γ )|2

1

p�

∑
α,β

|W(�;α, β)|2 = tr[��†].

(164)
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10.3. Weyl functions

The Weyl function of the operator � is defined as

W̃ (�;α, β) = tr[�D(α, β)] = χ(2−1αβ)
∑
γ

χ(αγ )�X(γ, β + γ )

= χ(−2−1αβ)
∑
γ

χ(−βγ )�P (γ, α + γ ). (165)

The Weyl function is related to the Wigner function through a two-dimensional Fourier
transform (indicated with the tilde in the notation):

W̃ (�;α, β) = 1

p�

∑
γ,δ

W(�; γ, δ)χ(αδ − βγ ). (166)

This is a direct consequence of the two-dimensional Fourier transform between the
displacement operators and the displaced parity operators in equation (125).

As an example, we consider the Fourier and displacement operators and we find

W̃ (F ;α, β) = p−�/2χ(−α2 − β2 − 2−13αβ)G(1)
(167)

W̃ (D(κ, λ);α, β) = p�δ(κ,−α)δ(λ,−β).
We also consider the symplectic operators and using equation (139) we find

W̃ (S(q, r, s);α, β) = p−�G(A)G(B)χ(�)
A = −2−1(1 + rs)−1qs; B = (2qs)−1 + (2q)−1r − s−1 + (2s)−1q (168)

� = (2s)−1qβ2 + 2−1αβ − (4B)−1[s−1β(q − 1) + α]2,

where G(A),G(B) are Gauss sums for GF(p�), defined in equation (87).
We next consider the special case of operators�which are factorized as in equation (157).

Taking into account equation (116) we see that the corresponding Weyl function factorizes as

W̃ (�;α, β) = W̃(�0;α0, β0) · · · W̃(��−1;α�−1, β�−1). (169)

10.4. Expansion of an arbitrary operator in terms of displacement operators

An arbitrary operator� can be expanded in terms of the displacement operators with the Weyl
functions as coefficients:

� = 1

p�

∑
α,β

W̃ (�;−α,−β)D(α, β); α, β ∈ GF(p�). (170)

This is proved by taking the matrix elements of both sides. An important special case of
such operators is the unitary U(p�) transformations. In this case the displacement operators
D(α, β) can be viewed as the p2� generators of the U(p�) group [56].

We next consider the special case of operators � which are product as in equation (157).
Taking into account equation (169) we see that in this case equation (170) becomes

�0 × · · · ×��−1 =
[

1

p

∑
W̃(�0;−α0,−β0)D(α0, β0)

]

× · · ·
[

1

p

∑
W̃(��−1;−α�−1,−β�−1)D(α�−1, β�−1)

]
. (171)
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10.5. Radon transforms of Weyl functions

The properties of the Weyl functions are intimately related to the properties of the displacement
operators. For example equation (140) lead to the following marginal properties of the Weyl
functions with respect to the X − P axes:

1

p�

∑
α

W̃ (�;α, β) = �X(−2−1β, 2−1β)

1

p�

∑
β

W̃ (�;α, β) = �P (−2−1α, 2−1α) (172)

1

p�

∑
α,β

W̃ (�;α, β) = W(�; 0, 0).

Similar properties can be proved with respect to different axes using equation (141):

1

p�

∑
ε,ζ

W̃ (�; ε, ζ )δ(−sε + tζ, β) = �X(q,r,s)(−2−1β, 2−1β)

(173)
1

p�

∑
ε,ζ

W̃ (�; ε, ζ )δ(qε − rζ, α) = �P(q,r,s)(−2−1α, 2−1α),

where the ‘(q,r,s) matrix elements’ of � have been defined in equation (163). The left-hand
side of these relations are the Radon transform of the Weyl function.

The Weyl function is the Fourier transform of the matrix elements �X(γ, β + γ ) and
�P (γ, α + γ ) in equation (165). Using Parceval’s theorem we get another set of marginal
properties that involves the absolute value of the Weyl function squared:

1

p�

∑
α

|W̃ (�;α, β)|2 =
∑
γ

|�X(γ, β + γ )|2

1

p�

∑
β

|W̃ (�;α, β)|2 =
∑
γ

|�P (γ, α + γ )|2 (174)

1

p�

∑
α,β

|W̃ (�;α, β)|2 = tr[��†].

10.6. Quantum tomography

Using the inverse Radon transform of equation (145) we can show that

W̃ (�; tα, sα) =
∑

β∈GF(p�)

�X(q,r,s)(β, β)χ(αβ)

(175)
W̃ (�; rβ, qβ) =

∑
α∈GF(p�)

�P(q,r,s)(α, α)χ(−αβ).

If � is a density matrix then the �X(q,r,s)(β, β) and �P(q,r,s)(α, α) are probabilities.
Measurement of these probabilities along all lines of the finite geometry phase space, and
use of these relations will give the Weyl function. Equation (166) can then be used to calculate
the corresponding Wigner function; and equation (170) to calculate the density matrix.

It is seen that in Galois quantum systems we can use tomography techniques similar to the
ones used in the harmonic oscillator context. This is an example of the fact that phase-space
methods in Galois quantum systems are as powerful as in harmonic oscillators.
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11. R-systems with position and momentum in the ring [Zp]�

In this section we consider a system comprised of �-component systems, each of which is
described by a p-dimensional Hilbert space H. The position and momentum take values in
the ring [Zp]� ≡ Zp × · · · × Zp, and for this reason, we refer to it as an R-system. The
Hilbert space of the system is the tensor product of equation (64), as in Galois systems. But
its Hamiltonian is the generic Hamiltonian of equation (101), in contrast to Galois systems
which are described by the specialized Hamiltonian of equation (100).

The field GF(p�) and the ring [Zp]� are very similar with respect to addition; but they are
very different when we consider multiplication. A consequence of this is that a G-system is
very different from an R-system. We study displacements and symplectic transformations in
R-systems so that the reader can compare and contrast them with their counterparts in Galois
quantum systems.

11.1. Additive characters in the ring [Zp]�

We consider the ring [Zp]� and denote its elements as

(αλ) ≡ (α0, . . . , α�−1). (176)

Let (0, . . . , 0) be its zero element and (1, . . . , 1) its unity. Addition and multiplication are
defined componentwise as

(αλ) + (βλ) = (αλ + βλ); (αλ)(βλ) = (αλβλ);
(177)

αλ, βλ ∈ Zp; λ = 0, . . . , �− 1.

We note that elements like (0, 1, 0, . . . , 0) have no inverse.
We define the additive characters

ψ[(αλ)] = ω
(∑

λ

αλ

)
; ψ[(αλ)]ψ[(βλ)] = ψ[(αλ) + (βλ)]. (178)

The [Zp]� can be viewed as an �-dimensional vector space over the field Zp. The scalar
product of two vectors (αλ) and (βλ) is an integer in Zp and we denote it as (αλ, βλ). Then:

ψ[(αλ)(βλ)] = ω[(αλ, βλ)]. (179)

It is easily seen that

1

p�

∑
(αλ)

ψ[(αλ)(βλ)] = δ[(βλ), (0)]. (180)

11.2. Fourier transform in R-systems

Position states in R-systems are defined in analogous way to equation (65) as

|X; (mλ)〉 ≡ |X ;m0〉 ⊗ · · · ⊗ |X ;m�−1〉. (181)

The Fourier transform is given in terms of the characters of equation (178) as

F = F ⊗ · · · ⊗ F = (p�)−1/2
∑

(mλ),(nλ)

ψ[(mλ)(nλ)]|X; (mλ)〉〈X; (nλ)|. (182)

This operator performs independent Fourier transforms in the component systems. It is similar
to the Fourier transform of equation (73) for G-systems, but here g = 1.
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In order to quantify the difference between F and the Fourier transform F in G-systems,
we define the unitary operator

U =
∑

|X ;m0〉〈X ;m0| ⊗ · · · ⊗ |X ;m�−1〉〈X ;m�−1|
=

∑
|P;m0〉〈P;m0| ⊗ · · · ⊗ |P;m�−1〉〈P;m�−1|, (183)

where the summation is over all (m0, . . . , m�−1). mλ have been given in terms of {mλ}
in equation (32). The equality in the two expressions in equation (183) is proved using
equation (33). It is then easily seen that

F = UF; [U,F ] = [U,F] = [F,F] = 0. (184)

Acting with F on the position states |X;m〉 we get momentum states in R-systems

|P; (mλ)〉 = F|X; (mλ)〉 = |P;m0〉 ⊗ · · · ⊗ |P;m�−1〉 = U †|P ;m〉. (185)

It is seen that the momentum states |P;m〉 in R-systems are different from the corresponding
momentum states |P ;m〉 in G-systems.

11.3. Displacements in R-systems

Displacements in R-systems are defined in a similar way to displacements in G-systems but
the formulas involve now the characters of equation (178):

Z[(αλ)] =
∑
(nλ)

ψ[(αλ)(nλ)]|X; (nλ)〉〈X; (nλ)| = Z(α0)⊗ · · · ⊗ Z(α�−1)

(186)
X[(βλ)] =

∑
(nλ)

ψ[−(βλ)(nλ)]|P; (nλ)〉〈P; (nλ)| = X (β0)⊗ · · · ⊗ X (β�−1).

These obey the relation

X[(βλ)]Z[(αλ)] = Z[(αλ)]X[(βλ)]ψ[−(αλ)(βλ)]. (187)

General displacement in these systems is defined as

D[(αλ), (βλ)] = Z[(αλ)]X[(βλ)]ψ[−2−1(αλ)(βλ)]; {D[(αλ), (βλ)]}† = D[(−αλ), (−βλ)].
(188)

These can be expressed in terms of the displacement operators D acting on the various
components of the system as

D[(αλ), (βλ)] = D(α0, β0)⊗ · · · ⊗ D(α�−1, β�−1). (189)

Using equation (116) we prove the following relationship between displacements in G-systems
and the corresponding displacements in R-systems:

X(β) = X[(βλ)]; Z(α) = Z[(αλ)] = UZ[(αλ)]U
†. (190)

As we explained earlier if α is an element of a Galois field, αλ are its components in the
1, ε, . . . , ε�−1 basis and αλ its components in the dual basis {Ei}.

11.4. Symplectic Sp(2�,Zp) transformations in R-systems

We consider an R-system and study briefly Sp(2�,Zp) symplectic transformations in its [Zp]2�

phase space. These are as

Z
′[(αλ)] = SZ[(αλ)]S

† = D

[(∑
tλκακ

)
,
(∑

sλκακ

)]
(191)

X
′[(βλ)] = SX[(βλ)]S

† = D

[(∑
rλκβκ

)
,
(∑

qλκβκ

)]
.
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Here q, r, s, t are �× � matrices with elements in Zp.
We require that the transformations (191) preserve equation (187); that all Z

′[(αλ)]
commute with each other; and that all X

′[(βλ)] commute with each other. This leads to the
constraints:

qT r − rT q = 0; sT t − tT s = 0; qT t − rT s = 1. (192)

These transformations contain 4�2 parameters in Zp. Equation (192) impose 2�2 − �

constraints among them. Therefore the symplectic transformations S are functions of 2�2 + �
independent parameters in Zp. These transformations form the symplectic Sp(2�,Zp) group.
Numerical evaluation of the symplectic operator S has been discussed in [41] for the simple
case � = 2.

Symplectic transformations act on general displacement operators as follows:

SD[(αλ), (βλ)]S
† = D

[(∑
tλκακ +

∑
rλκβκ

)
,
(∑

sλκακ +
∑
qλκβκ

)]
. (193)

An important subgroup of Sp(2�,Zp) is the Sp(2,Zp)×· · ·×Sp(2,Zp)which corresponds
to the special case that the matrices q, r, s, t are diagonal.

qλκ = Qλδλκ; rλκ = Rλδλκ; sλκ = Sλδλκ; tλκ = Tλδλκ
(194)

QλTλ − RλSλ = 1; Qλ,Rλ, Sλ, Tλ ∈ Zp.

Equations (128) and (191) look similar to each other but they use a very different
multiplication. In equation (128) we have Galois multiplication and in equation (191) matrix
multiplication. Consequently, it is difficult to find a simple relationship between symplectic
Sp(2,GF(p�)) transformations in G-systems and symplectic Sp(2�,Zp) transformations
in R-systems. For Fourier transforms and displacements we gave such relations in
equations (184) and (190).

12. Frobenius symmetry in Galois systems

An important aspect of Galois theory is the Frobenius transformations of equation (3) and the
Galois groups of equations (6) and (8). In this section we extend these ideas in our context
[49].

We define the Frobenius transformations in the Frobenius subspace Hdκ as

Gdκ =
∑
ν∈Zd

|X;m(d, κ, ν + 1)〉〈X;m(d, κ, ν)|; Gddκ = πdκ . (195)

Using the states of equation (97) we can express Gdκ in a diagonal form as

Gdκ =
∑
ν∈Zd

�d(−ν)|P;m(d, κ, ν)〉〈P;m(d, κ, ν)|. (196)

In the special case d = 1 we get G1κ = π1κ .
General Frobenius transformations in H are defined as

G =
∑
d|�

n(d,p)∑
κ=1

Gdκ . (197)

These transformations are intimately related to Galois theory. There is no analogue of these
transformations in general finite quantum systems or in the harmonic oscillator.

It is easily seen that

GG† = 1; G� = 1

Gπdκ = πdκG = Gdκ; Gdπdκ = πdκ (198)

[G,�d ] = 0.
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From these it follows that

�1G = �1. (199)

Therefore the

Gal[H/H1] = {1,G,G2, . . . ,G�−1}. (200)

form a cyclic group of order � whose elements leave fixed all states in H1 (i.e., all states
which are superpositions of |X;m〉 withm ∈ Zp). This is the analogue of the Galois group of
equation (6) in the present context.

More generally, for d|�
�dGd = �d. (201)

Therefore the

Gal[H/Hd ] = {1,Gd ,G2d , . . . ,G�−d}. (202)

form a cyclic group of order �/d whose elements leave fixed all the states inHd (i.e., all states
which are superpositions of |X;m〉 withm ∈ GF(pd)). This is a subgroup of Gal[H/H1], and
it is the analogue of the Galois group of equation (8) in the present context.

The Frobenius transformations commute with the Fourier operator:

[G, F ] = 0. (203)

Acting with Gλ on position and momentum states we get

Gλ|X;m〉 = |X;mpλ〉; Gλ|P ;m〉 = |P ;mpλ〉. (204)

Acting with Gλ on both sides of displacement and symplectic operators we get

GλD(α, β)(G†)λ = D(
αp

λ

, βp
λ)

GλS(q, r, s)(G†)λ = S(qpλ, rpλ , spλ) (205)

GλT (q, r, s;α, β, γ )(G†)λ = T (
qp

λ

, rp
λ

, sp
λ;αpλ, βpλ, γ )

.

In the special case that α, β, q, r, s ∈ GF(pd) we get

α, β ∈ GF(pd)→ [Gd ,D(α, β)] = 0

q, r, s ∈ GF(pd)→ [Gd, S(q, r, s)] = 0 (206)

q, r, s, α, β ∈ GF(pd)→ [Gd , T (q, r, s;α, β, γ )] = 0.

We next calculate the Wigner and Weyl functions of G:

W(G;α, β) =
∑
m

χ(2αβ − 2αmp)δ(2β,m +mp)

(207)
W̃ (G;α, β) =

∑
m

χ(2−1αβ + αmp)δ(β,m−mp).

Using equation (170) we expand G in terms of displacement operators:

G = 1

p�

∑
α,β

χ [−2−1α(βp + β)]D(α, βp − β). (208)
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12.1. Spectrum of Frobenius transformations

The fact that G� = 1 implies that its eigenvalues are powers of ��:

G = �(0) +��(1)�(1) + · · · +��(�− 1)�(�− 1)
(209)

�(λ)�(µ) = �(λ)δ(λ, µ);
∑
λ

�(λ) = 1; λ,µ ∈ Z�.

Here �(λ) are orthogonal projectors to the eigenspaces corresponding to the various
eigenvalues of G. These can be expressed in terms of powers of G as

�(λ) = 1

�
{1 + G��(−λ) + [G��(−λ)]2 + · · · + [G��(−λ)]�−1}. (210)

Using the diagonal form of G given in equation (196) we find that

�(0) =
∑
d|�

n(d,p)∑
κ=1

|P;m(d, κ, d)〉〈P;m(d, κ, d)|, (211)

where �(0) is a projector into a space spanned by one vector from each Frobenius subspace
and whose dimension is M(�, p) (see equation (13)). More generally, taking into account that
�d(−ν) = ��(−ν�/d) we find that

�(λ) =
∑
d|�

n(d,p)∑
κ=1

|P;m(d, κ, ν)〉〈P;m(d, κ, ν)|; −ν�/d = λ(mod �). (212)

The summation here involves only those divisors d of � for which there exists some ν so that
−ν�/d = λ(mod �).

Using equation (209) we show that Gd (where d|�) can be written as

Gd = �d(0) +��/d(1)�d(1) + · · · +��/d

(
�

d
− 1

)
�d

(
�

d
− 1

)
(213)

�d(m) = �(m) +�

(
m +

�

d

)
+ · · · +�

(
m +

(d − 1)�

d

)
; m ∈ Z�/d

and we can then prove that

�d�d(m) = δ(m, 0)�d. (214)

This shows that the spaceHd is a subspace of the combined eigenspace of G corresponding to
the eigenvalues 1,��(d), . . . , ��(�− d). A special case of equation (214) is that

�1�(m) = δ(m, 0)�1. (215)

13. Constants of motion in Galois systems with Frobenius symmetry

We say that a Galois quantum system has a Frobenius symmetry, when its Hamiltonian h
commutes with G (and therefore with all �(λ)):

[G, h] = [�(λ), h] = 0. (216)

Examples are systems with the Hamiltonians hA and hB of equation (102).
We assume that at the time t = 0, a system with Frobenius symmetry is described by the

density matrix ρ(0) (which is a p� × p� matrix). Then at time t, its density matrix is

ρ(t) = exp(ith)ρ(0) exp(−ith). (217)
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We consider the following �2 ‘submatrices’ (which are also p� × p� matrices):

ρλµ(t) ≡ �(λ)ρ(t)�(µ);
∑
λ,µ

ρλµ(t) = ρ(t);
(218)

[ρλµ(t)]
† = ρµλ(t); λ,µ ∈ Z�.

It is easily seen that in the special case that ρ commutes with G (and therefore with all�(λ)),
the off-diagonal submatrices are equal to 0. But in general, they are not zero.

A consequence of the fact that the evolution operator exp(ith) commutes with �(λ) is
that each submatrix evolves independently of the other submatrices, as

ρλµ(t) = exp(ith)ρλµ(0) exp(−ith). (219)

13.1. Time evolution of the submatrices

We first consider the diagonal submatrices ρλλ(t), which are Hermitian matrices. Their
eigenvalues are constant in time, because time evolution is a unitary transformation. These
can be written in a diagonal form as

ρλλ(t) = Uλ(t)Kλ[Uλ(t)]†
(220)

Uλ(t) = exp(ith)Uλ(0); Uλ(t)[Uλ(t)]† = 1.

Here Uλ(t) is unitary operator. Kλ is a diagonal matrix with non-negative diagonal elements,
which contains the eigenvalues of ρλλ(t), and does not depend on time. It is easily seen that

trKλ = tr[ρ(t)�(λ)];
∑
λ

trKλ = 1. (221)

Physically, the eigenvalues of ρλλ(t) divided by trρλλ(t) = tr[ρ(t)�(λ)] are probabilities.
We next consider the off-diagonal submatrices ρλµ(t) with λ �= µ. All their eigenvalues

are zero and in an appropriate basis, they are strictly triangular matrices, i.e., all elements
ρλµ(i, j) with indices i � j (or i � j ) are zero. We work in an arbitrary basis and define the

Rλµ(t) = ρλµ(t)[ρλµ(t)]† = �(λ)ρ(t)�(µ)ρ(t)�(λ)
(222)

Sλµ(t) = [ρλµ(t)]
†ρλµ(t) = �(µ)ρ(t)�(λ)ρ(t)�(µ).

In general, Rλµ(t) is not equal to Sλµ(t), i.e., the matrices ρλµ(t) are not normal. We consider
the singular values of ρλµ(t), i.e., the eigenvalues of [Rλµ(t)]1/2, which are also the eigenvalues
of [Sλµ(t)]1/2 and are non-negative numbers. Under unitary time evolution, the singular values
are constant in time. We write Rλµ(t) as

Rλµ(t) = Vλµ(t)Kλµ[Vλµ(t)]†
(223)

Vλµ(t) = exp(ith)Vλµ(0); Vλµ(t)[Vλµ(t)]† = 1,

where Kλµ is a diagonal matrix with non-negative diagonal elements, which contains the
eigenvalues of Rλµ(t) (which are the squares of the singular values of ρλµ(t)), and does not
depend on time. Vλµ(t) is a unitary matrix.

A polar decomposition of the matrix ρλµ(t) gives

ρλµ(t) = [Rλµ(t)]
1/2�λµ(t); �λµ(t)[�λµ(t)]

† = 1
(224)

ρµλ(t) = [ρλµ(t)]
† = [�λµ(t)]

†[Rλµ(t)]
1/2,

where�λµ(t) are unitary matrices representing the ‘exponential of the phase’. Equation (223)
shows that

[Rλµ(t)]
1/2 = Vλµ(t)K1/2

λµ [Vλµ(t)]†, (225)
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and we can write ρλµ(t) as

ρλµ(t) = Vλµ(t)K1/2
λµ Tλµ(t); Tλµ(t) = [Vλµ(t)]†�(t). (226)

This is the singular value decomposition of ρλµ(t).
It is easily seen that∑

λ,µ

tr
(
K2
λµ

) = tr[ρ2(t)], (227)

where the summation includes both diagonal and off-diagonal terms. For the diagonal terms
the Kλλ is the same as the Kλ in equation (220).

13.2. Constants of motion

We study in more detail the diagonal submatrices ρλλ(t). Their characteristic polynomials are

det[y1 − ρλλ(t)] = yp� + aλλ(p
� − 1)yp

�−1 + · · · + aλλ(0), (228)

where aλλ(µ) denotes the coefficient of pµ. The eigenvalues of ρλλ(t) are constant in time,
and therefore their characteristic polynomials are constant in time:

det[y1 − ρλλ(t)] = det[y1 − ρλλ(0)]. (229)

In other words the coefficients aλλ(µ) do not depend on time.
The −aλλ(p� − 1) is equal to the trace of ρλλ(t) and is a probability. These probabilities

are constant in time:

tr[ρ(t)�(λ)] = tr[ρ(0)�(λ)]. (230)

The probabilities tr[ρ(t)�(λ)] are � constants of motion in systems with Frobenius
symmetries. Their sum is equal to 1 and therefore �− 1 of them are independent.

13.3. Example with GF(9)

As an example, we consider a Galois quantum system where position and momentum take
values in GF(9). For calculations we choose the irreducible polynomial P(ε) = ε2 + ε + 2.
Taking into account equation (69), we see that

G = |X; 0〉〈X; 0| + |X; 1〉〈X; 1| + |X; 2〉〈X; 2| + |X; 1 + 2ε〉〈X; 2 + ε|
+ |X; 2 + ε〉〈X; 1 + 2ε| + |X; ε〉〈X; 2 + 2ε| + |X; 2 + 2ε〉〈X; ε|
+|X; 1 + ε〉〈X; 2ε| + |X; 2ε〉〈X; 1 + ε|. (231)

In this case

G2 = 1; G = �(0)−�(1). (232)

We assume that the Hamiltonian of this system is hA of equation (102), which commutes
with G. If ρ is the density matrix of the system we use the notation

ρX(m, n) = 〈X;m|ρ|X; n〉. (233)

Using the fact that �(1) = (1 − G)/2 we find

tr[ρ�(1)] = 1
2 [ρX(ε, ε) + ρX(1 + ε, 1 + ε) + ρX(2 + ε, 2 + ε) + ρX(1 + 2ε, 1 + 2ε)

+ ρX(2ε, 2ε) + ρX(2 + 2ε, 2 + 2ε)− ρX(2 + 2ε, ε)− ρX(ε, 2 + 2ε)

− ρX(2ε, 1 + ε)− ρX(1 + ε, 2ε)− ρX(1 + 2ε, 2 + ε)− ρX(2 + ε, 1 + 2ε)].

(234)

This probability is constant in time and it is a constant of motion in this example. The
tr[ρ�(0)] is also constant, but it is not independent:

tr[ρ�(0)] = 1 − tr[ρ�(1)]. (235)
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13.4. Example with GF(81)

As a second example, we consider a Galois quantum system where position and momentum
take values in GF(81). In this case in addition to the irreducible polynomials of equation (37),
we have 18 more irreducible polynomials of order 4. The Frobenius transformation G obeys
the relations

G4 = 1; G = �(0) + i�(1)−�(2)− i�(3). (236)

Following our general notation, we call�1 the projector to the three-dimensional Hilbert space
H1 which is spanned by the position states |X;m〉, where m belongs to the subfield Z3, and
�2 the projector to the nine-dimensional Hilbert space H2 which is spanned by the position
states |X;m〉, where m belongs to the subfield GF(9). Then

G�1 = �1; G2�2 = �2; G2 = [�(0) +�(2)] − [�(1) +�(3)]

�(0)�1 = �1; �(1)�1 = �(2)�1 = �(3)�1 = 0 (237)

[�(0) +�(2)]�2 = �2; [�(1) +�(3)]�2 = 0.

In this example, the tr[ρ�(0)], tr[ρ�(1)] and tr[ρ�(2)] are three independent constants of
motion. The

tr[ρ�(3)] = 1 − tr[ρ�(0)] − tr[ρ�(1)] − tr[ρ�(2)] (238)

is also a constant of motion, but it is not independent.

14. The group R[GF(p�)] of Frobenius, displacement and symplectic transformations

The unitary operators

R(λ; q, r, s;α, β, γ ) ≡ GλT (q, r, s;α, β, γ ) = T (
qp

λ

, rp
λ

, sp
λ;αpλ, βpλ, γ )

Gλ (239)

perform Frobenius, displacement and symplectic transformations. It is easily seen that

R(λ1; q1, r1, s1;α1, β1, γ1)R(λ2; q2, r2, s2;α2, β2, γ2) = R(λ; q, r, s;α, β, γ ), (240)

where

λ = λ1 + λ2

q = qn1 q2 + r2s
n
1 ; n = p�−λ2

r = q2r
n
1 + r2q

−n
1

(
1 + rn1 s

n
1

)
s = qn1 s2 + sn1q

−1
2 (1 + r2s2)

α = αn1q2 + α2 − βn1 r2
β = −αn1 s2 + β2 + βn1 (1 + r2s2)q

−1
2

γ = γ1 + γ2 + 2−1[αn1α2s2 + αn1β2q2 − βn1β2r2 − βn1α2(1 + r2s2)q
−1
2

]
.

(241)

The operators R(λ; q, r, s;α, β, γ ) form a group which we denote as R[GF(p�)]. Using
equation (205), we easily show that the T[GF(p�)] group of displacement and symplectic
transformations is a normal subgroup of R[GF(p�)]. The Gal[H/H1] is also a subgroup of
R[GF(p�)] and

T[GF(p�)]
⋂

Gal[H/H1] = {1}. (242)

Therefore, the group R[GF(p�)] is the semidirect product of the T[GF(p�)] by the Gal[H/H1]
group of equation (200). Consequently, the quotient group R[GF(p�)]/T[GF(p�)] is
isomorphic to the Gal[H/H1] group.
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15. General transformations that leave invariant the Frobenius subspaces

In Galois fields, the Galois group of equation (6) consists of all automorphisms of GF(p�)
which map the conjugates to each other. In this section we study the corresponding problem in
our context, which is to find all transformations that leave invariant the Frobenius subspaces.
The Galois group of equation (200) is only a very small subgroup, of the group of these
transformations.

15.1. Dual Frobenius transformations

We act with the Fourier transform of equation (96) on both sides of Gdκ and get the dual
Frobenius transforms

Ldκ = FdκGdκF†
dκ =

∑
ν∈Zd

�d(ν)|X;m(d, κ, ν)〉〈X;m(d, κ, ν)|

=
∑
ν∈Zd

|P;m(d, κ, ν + 1)〉〈P;m(d, κ, ν)|. (243)

General dual Frobenius transformations in H are defined as

L =
∑
d|�

n(d,p)∑
κ=1

Ldκ . (244)

It has properties similar to those of G. For example,

L�1 = �1L = �1 (245)

and the

Gal[H/H1] = {1,L,L2, . . . ,L�−1} (246)

form a cyclic group of order � whose elements leave fixed all states in H1. More generally,
for d|�,

Ld�d = �dLd = �d (247)

and the

Gal[H/Hd ] = {1,Ld ,L2d , . . . ,L�−d} (248)

form a cyclic group of order �/d whose elements leave fixed all the states in Hd .

15.2. General transformations in Hdκ

The operators Gdκ and Ldκ form a Heisenberg–Weyl group in the Frobenius subspace Hdκ :

GβdκLαdκ = LαdκG
β

dκ�d(−αβ); Gddκ = Lddκ = πdκ; α, β ∈ Zd . (249)

An arbitrary operator �dκ acting on the Frobenius subspace Hdκ can be written as

�dκ =
∑
α,β

τdκ(α, β)LαdκG
β

dκ; τdκ(α, β) = 1

d
tr
[
�dκL−α

dκ G
−β
dκ

]
�d(−αβ); α, β ∈ Zd

(250)

This is analogous to equation (170).
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15.3. Unitary transformations that leave invariant the Frobenius subspaces

We consider the following direct product of groups:

g =
∏
d|�

n(d,p)∏
κ=1

U(d)dκ . (251)

Here we use the notationU(d)dκ for the group ofU(d) transformations acting on the Frobenius
subspace Hdκ . These are the most general unitary transformations which leave all the Hdκ

invariant in the sense that when they act on a state that belongs in Hdκ they produce another
state that belongs entirely in Hdκ . Operators U in g obey the relations:

[U, πdκ ] = 0. (252)

The transformations U can be written in terms of the operators of equation (250) as

U =
∑
d|�

n(d,p)∑
κ=1


∑
α,β

τdκ(αdκ , βdκ)Lαdκdκ G
βdκ
dκ


 ; αdκ, βdκ ∈ Zd , (253)

where the requirement of unitary U imposes constraints on the coefficients τdκ(αdκ , βdκ).

16. Discrete symmetries and analytic representations in Riemann surfaces

A discrete symmetry, like the Frobenius symmetry in Galois quantum systems, introduces a
‘multivaluedness’. Quantum states related to each other through this symmetry, behave in the
same way with regard to certain properties. In this section we use analytic representations
to show a conceptual link between this kind of multivaluedness and the multivaluedness in
coverings of Riemann surfaces.

A general review on analytic representations in quantum mechanics has been given in [57].
Analytic representations in Riemann surfaces for general systems with discrete symmetries
have been discussed in [58]. These are briefly summarized in the subsection below and then
applied in the context of Galois quantum systems with Frobenius symmetries.

16.1. Analytic representation of general systems with discrete symmetries in the d-sheeted
complex plane

We consider a harmonic oscillator described by the infinite-dimensional Hilbert space H. Let
a†, a be the creation and annihilation operators and |M〉n the number eigenstates:

|M〉n = (a†)M

(M!)1/2
|0〉n, (254)

where the subscript n indicates the number states. We split the Hilbert space H of the system
as

H =
d−1⊕
m=0

Hm =
∞⊕
N=0

HN

Hm = span{|m〉n, |d +m〉n, |2d +m〉n, . . .} (255)

HN = span{|dN〉n, |dN + 1〉n, . . . , |dN + d − 1〉n}.
The spaces Hm are infinite dimensional and the spaces HN are d dimensional. We call P(m)

the projectors to the spaces Hm. Within the spaces HN we perform Fourier transforms with



Topical Review R323

the operator

F = d−1/2
∞∑
N=0


 ∑
m,k∈Zd

�d(−mk)|m + dN〉n n〈k + dN |

 ; F4 = 1. (256)

Acting with it on the number states we get the ‘dual number states’

|M〉d = F|M〉n. (257)

Here the subscript d indicates dual number states. We call ℘(m) the projectors:

℘(m) = FP(m)F† =
∞∑
N=0

|m + dN〉d d〈m + dN |. (258)

We consider the unitary operator

G =
∞∑
N=0


 ∑
m∈Zd

|dN +m + 1〉n n〈dN +m|



= ℘(0) +�d(1)℘ (1) + · · · +�d(d − 1)℘ (d − 1). (259)

It is easily seen that

Gd = GG† = 1. (260)

The projectors ℘(m) can be written in terms of G as

℘(m) = 1

d
{1 +�d(−m)G +�d(−2m)G2 + · · · +�d [−m(d − 1)]Gd−1}. (261)

We assume that the Hamiltonian h of the system commutes with G:

[G, h] = 0. (262)

Then the system has a discrete symmetry and there is a multivaluedness associated with it.
For example, if |s〉 is an eigenstate of h (or any other operator which commutes with G), then
all states Gm|s〉 are also eigenstates with the same eigenvalue.

We assume that at the time t = 0, the system is described by the density matrix ρ(0).
Since the Hamiltonian h commutes with G, it also commutes with all the ℘(m). Therefore
the probabilities tr[ρ(t)℘ (m)] are constant in time:

tr[ρ(t)℘ (m)] = tr[ρ(0)℘ (m)]; ρ(t) = exp(ith)ρ(0) exp(−ith). (263)

The sum of these probabilities is equal to 1, and therefore there are d−1 independent conserved
quantities.

Let C∗ = C − {0} be the punctured complex plane. We consider the Riemann surface
C∗/Zd associated with the map z1/d . The covering surface of this Riemann surface is the
d-sheeted complex plane with the cuts Tm

Tm = {z = r�d(m); r � 0} ; m = 0, . . . , d − 1 (264)

and the sheets

�m =
{
z = r exp(iφ); r � 0; 2πm

d
< φ <

2π(m + 1)

d

}
. (265)

The sheet number of a complex number z is defined as

τ(z; d) = IP

(
d arg(z)

2π

)
; τ(z; d) ∈ Zd , (266)

where IP stands for the integer part of the number.
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Let

|s〉 =
∞∑
M=0

s(M)|M〉n;
∞∑
M=0

|s(M)|2 = 1 (267)

be an arbitrary state in H. To each M corresponds a pair (m,N) such that:

m = M(mod d); m ∈ Zd
(268)

N = M −m
d

; N ∈ Z.

We represent the s(M)|M〉n part of the state |s〉 with a function which is non-zero only in
the m-sheet and it is s(M)zNd(N !)−1/2. Therefore the full state |s〉 is represented with the
following function in the d-sheeted complex plane:

S1(z) =
∞∑
N=0

s[τ(z; d) +Nd]zNd(N !)−1/2. (269)

In the sheet �m, this function represents only the projection Pm|s〉 of the state |s〉 in the
subspace Hm. But when we consider the function S1(z) in all the d sheets we get all the
projections Pm|s〉 and therefore the full state |s〉.

The function S1(z) is analytic in the interior of all sheets�m and has discontinuities across
the cuts Tm given by

 1(z;m) =
∞∑
N=0

[s(m +Nd)− s(m +Nd − 1)]zdN(N !)−1/2. (270)

In this representation the transformations G are implemented as

Gm|s〉 → S1[�d(−m)z]. (271)

This is easily seen from the fact that

τ [�d(−m)z; d] = τ(z; d)−m. (272)

The fact that �d(d) = 1 expresses the relation Gd = 1 in this formalism.
The scalar product of two states |s〉 and |r〉 is given by

〈s|r〉 =
∫
C

dµd(z) exp(−|z|2d)[S1(z)]
∗R1(z) =

∞∑
M=0

[s(M)]∗r(M)

(273)
dµd(z) = d2|z|2(d−1) dzR dzI

π
,

where zR, zI are the real and imaginary parts of z, correspondingly.
We next introduce another analytic representation for the same system, in the �-sheeted

complex plane where � is an integer multiple of d. In the present context this is a more
complicated representation, without any physical motivation behind it. However, in the
following subsection this representation will be very important, and the physical motivation
for it will become clear.

In the �-sheeted complex plane the sheet number τ(z; �) of a complex number z, takes
values in Z�. We define the sheet number modulo d (where d|�) of a complex number z in the
�-sheeted complex plane as

τ(z; �; mod d) = τ(z; �)(mod d); τ(z; �; mod d) ∈ Zd . (274)

In this way the first d sheets are numbered from 0 to d − 1; and then the next d sheets from 0
to d − 1; until the last sheet which is numbered with d − 1. It is clear that we have �/d sheets
with the same number τ(z; �; mod d).
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We now represent the state of equation (271) with the following function in the �-sheeted
complex plane:

S2(z) = d

�

∞∑
N=0

s[τ(z; �; mod d) +Nd]zN�(N !)−1/2. (275)

In the first d sheets we have d functions which represent the Pm|s〉 components of the state |s〉.
The fact that τd(z; �; mod d) is defined modulo d, implies that there is periodicity in the next
d sheets, which continues up to the last d sheets (the d is a divisor of �). In other words, S2(z)

is the same in all �/d sheets with the same τ(z; �; mod d):

S2[z��(d)] = S2(z). (276)

In this representation the transformations G are implemented as

Gm|s〉 → S2[z��(−m)] (277)

and equation (276) expresses the relation Gd = 1 in this formalism.
In this representation the scalar product of two states |s〉 and |r〉 is given by

〈s|r〉 =
∫
C

dµ�(z) exp(−|z|2�)[S1(z)]
∗R1(z) =

∞∑
M=0

[s(M)]∗r(M)

(278)
dµ�(z) = �2|z|2(�−1) dzR dzI

π
,

which is the same as equation (273) with d replaced by �. The factor d/� in equation (275)
compensates for the periodicity, so that the scalar product is the same.

16.2. Analytic representation of Galois quantum systems with Frobenius symmetries in the
�-sheeted complex plane

We now apply the formalism of the previous subsection to Galois quantum systems [49]. We
will see that here there is a lot of extra structure related to the fact that the Frobenius symmetry
obeys not only the relation G� = 1 but also the relations Gdπdκ = πdκ for all divisors d of �.
This needs to be embodied in the analytic representation.

We consider a Galois quantum system described by the Hilbert space H. Using the
orthonormal basis |X;m(N, ν)〉, we express the general state of this system as

|s〉 =
M(�,p)∑
N=1

d∑
ν=1

s(N, ν)|X;m(N, ν)〉. (279)

We first consider the projection of this state to the d-dimensional space HN

πN|s〉 =
d∑
ν=1

s(N, ν)|X;m(N, ν)〉. (280)

Using equation (275), we represent it in the �-sheeted complex plane (where d|�) with the
function

SN(z) = d

�
s [N, ν = τ(z; �; mod d)] z�N(N!)−1/2. (281)

As we explained in equation (276), in this representation there is a periodicity

SN[z��(d)] = SN(z). (282)

The Frobenius transformations G are implemented as

GmπN|s〉 → SN[z��(−m)] (283)
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and equation (282) expresses the relation GdπN = πN (or Gdπdκ = πdκ ) in this formalism.
We see here the motivation for introducing the representation of equation (275).

We now consider the full state |s〉 and represent it with the function

S(z) =
M(�,p)∑
N=1

d

�
s [N, ν = τ(z; �; mod d)] z�N(N!)−1/2. (284)

We recall that when N is given, the corresponding (d, κ) are calculated using equation (20).
In this representation, the Frobenius transformations G are implemented as

Gm|s〉 → S[z��(−m)]. (285)

We have seen that the relations Gdπdκ = πdκ are embodied in the periodic structure of this
formalism. Consequently, the relations Gd�d = �d are also embodied in the formalism (see
equation (71)). The scalar product of two states is given by equation (278).

The function S(z) is analytic in the interior of all sheets�m and has discontinuities across
the cuts Tm given by

 m(z) =
M(�,p)∑
N=1

d

�
{s[N, ν = m(mod d)] − s[N, ν = m− 1(mod d)]}z�N(N!)−1/2. (286)

16.3. Example

We consider a Galois quantum system where the position and momentum take values in GF(9).
For calculations we choose the irreducible polynomial P(ε) = ε2 + ε + 2. Taking into account
equation (39) we write an arbitrary state in the nine-dimensional Hilbert space H as

|s〉 = s(1, 1)|X; 0〉 + s(2, 1)|X; 1〉 + s(3, 1)|X; 2〉 + s(4, 1)|X; 1 + 2ε〉 + s(4, 2)|X; 2 + ε〉
+ s(5, 1)|X; ε〉 + s(5, 2)|X; 2 + 2ε〉 + s(6, 1)|X; 1 + ε〉 + s(6, 2)|X; 2ε〉.

(287)

The second labelling method has been used here.
We next consider the complex plane with a cut along the real axes. The sheet �1 consists

of the complex numbers with zI > 0; and the sheet �2 consists of the complex numbers with
zI < 0 The state |s〉 is represented with the functions S(z) which in the sheet �1 is given by

S(z) = 1

2

[
s(1, 1)z2 + s(2, 1)

z4

(2!)1/2
+ s(3, 1)

z6

(3!)1/2

]

+ s(4, 1)
z8

(4!)1/2
+ s(5, 1)

z10

(5!)1/2
+ s(6, 1)

z12

(6!)1/2
(288)

and in the sheet �2 is given by

S(z) = 1

2

[
s(1, 1)z2 + s(2, 1)

z4

(2!)1/2
+ s(3, 1)

z6

(3!)1/2

]

+ s(4, 2)
z8

(4!)1/2
+ s(5, 2)

z10

(5!)1/2
+ s(6, 2)

z12

(6!)1/2
. (289)

There is a discontinuity along the real axis given by

 (z) = [s(4, 1)− s(4, 2)] z8

(4!)1/2
+ [s(5, 1)− s(5, 2)] z10

(5!)1/2
+ [s(6, 1)− s(6, 2)] z12

(6!)1/2
.

(290)
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If we perform the Frobenius transform of equation (231) on the state |s〉 we get the state G|s〉
which is represented with the function S(−z). This is given by equation (289) in the sheet
�1 and by equation (288) in the sheet �2.

The scalar product of two states |s〉 and |r〉 represented with the functions S(z) and R(z)

is given by

〈s|r〉 =
∫
C

dµ(z) exp(−|z|4)[S(z)]∗R(z); dµ2(z) = 4|z|2 dzRdzI
π

. (291)

17. Physical implementation of a Galois system with spins

17.1. Angle states and operators in a spin j = (p − 1)/2

An obvious physical system described by the p-dimensional Hilbert space H is a spin
j = (p − 1)/2. In this section we explain the correspondence between the various quantities
introduced earlier and the usual quantities within the spin formalism.

We use the notation |J ; jm〉 for the angular momentum states. The extra J to the
usual notation is not a variable, but it simply indicates angular momentum states. The
correspondence with the states introduced earlier is given by

|X ;m〉;↔ |J ; jm〉; j = p − 1

2
. (292)

Here p is an odd prime and therefore j is an integer.
The Fourier operator of equation (56) is in this case

F = (2j + 1)−1/2
∑
m,n∈Zp

ω(mn)|J ; jm〉〈J ; jn|. (293)

Acting with it on the angular momentum states we get the dual states which we call ‘angle
states’ [33]:

|ϑ; jm〉 = F |J ; jm〉 = (2j + 1)−1/2
∑
n∈Zp

ω(mn)|J ; jn〉. (294)

These correspond to the states |P;m〉 introduced earlier:

|P;m〉;↔ |ϑ; jm〉. (295)

LetJz,J+,J− be the angular momentum operators which obey the commutation relations
of the SU(2) algebra:

[Jz,J+] = J+; [Jz,J−] = −J−; [J+,J−] = 2Jz. (296)

The Casimir operator is given by

J 2 = J 2
z + 1

2 (J+J− + J−J+) = j (j + 1)1. (297)

Acting with the Fourier operator on both sides of the angular momentum operators we get the
angle operators

FJzF† = ϑz; FJ+F† = ϑ+; FJ−F† = ϑ−. (298)

These obey the SU(2) algebra

[ϑz, ϑ+] = ϑ+; [ϑz, ϑ−] = −ϑ−; [ϑ+, ϑ−] = 2ϑz (299)

and their Casimir operator is

ϑ2 = ϑ2
z + 1

2 (ϑ+ϑ− + ϑ−ϑ+) = j (j + 1)1. (300)
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The angular momentum operators act on the angular momentum states as follows:

J+|J ; jm〉 = [j (j + 1)−m(m + 1)]1/2|J ; jm + 1〉
J−|J ; jm〉 = [j (j + 1)−m(m− 1)]1/2|J ; jm− 1〉 (301)

Jz|J ; jm〉 = m|J ; jm〉
J 2|J ; jm〉 = j (j + 1)|J ; jm〉.

The angle operators act on the angle states in a similar way:

ϑ+|ϑ; jm〉 = [j (j + 1)−m(m + 1)]1/2|ϑ; jm + 1〉
ϑ−|ϑ; jm〉 = [j (j + 1)−m(m− 1)]1/2|ϑ; jm− 1〉 (302)

ϑz|ϑ; jm〉 = m|ϑ; jm〉
ϑ2|ϑ; jm〉 = j (j + 1)|ϑ; jm〉.

The ‘angular momentum-angle’ phase space is Zp ×Zp and as in equations (59) and (60)
we introduce the displacement operators Z(α) and X (β) which act on the angle and angular
momentum states as follows:
Z(α)|ϑ; jm〉 = |ϑ; jm + α〉; Z(α)|J ; jm〉 = ω(αm)|J ; jm〉
X (β)|ϑ; jm〉 = ω(−mβ)|ϑ; jm〉; X (β)|J ; jm〉 = |J ; jm + β〉. (303)

We can show that they are exponentials of Jz and ϑz
Z(α) = ω(αJz); X (β) = ω(−βϑz). (304)

A polar decomposition of the operators (J+,J−) can be given in terms of a radial operator
Jr and the displacement operator X (1) (which is the exponential of ϑz):

J+ = JrX (1); J− = [X (1)]†Jr
Jr = (J+J−)1/2 = [

j (j + 1)1 − J 2
z + Jz

]1/2
(305)

[Jr ,Jz] = 0.

A similar decomposition can be given for the operators (ϑ+, ϑ−) in terms of a radial operator
ϑr and the displacement operator Z(1) (which is the exponential of Jz):

ϑ+ = ϑrZ(1); ϑ− = [Z(1)]†ϑr
ϑr = (ϑ+ϑ−)1/2 = FJrF† = [

j (j + 1)1 − ϑ2
z + ϑz

]1/2
(306)

[ϑr, ϑz] = 0.

17.2. � coupled spins as a Galois system

We consider � spins with j = (p − 1)/2. This system is described by the p�-dimensional
Hilbert space H = H ⊗ · · · ⊗ H. In analogy with equation (65) we introduce the angular
momentum states

|J ; jm〉 ≡ |J ; jm0〉 ⊗ · · · ⊗ |J ; jm�−1〉; m = m0 +m1ε + · · · +m�−1ε
�−1 (307)

and through the Fourier transform of equation (73) (expressed in the present context), the
angle states

|θ; jm〉 ≡ |ϑ; jm0〉 ⊗ · · · ⊗ |ϑ; jm�−1〉. (308)

We also introduce the operators (equations (78) and (79)):

Jz =
∑
λ

ελ [1 ⊗ · · · ⊗ Jλ ⊗ · · · ⊗ 1]

(309)
θz = FJzF † =

∑
λ,µ

Gλµε
µ[1 ⊗ · · · ⊗ ϑµ ⊗ · · · ⊗ 1].
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We can then define the χ
(
J 2
z

)
, χ

(
θ2
z

)
and Hamiltonians analogous to equations (102) and

(104). For the Hamiltonian

hA = ln
[
χ

(
J 2
z

)
χ

(
θ2
z

)]
, (310)

we gave the corresponding evolution operator at t = 1, in table 1. Similar calculations can be
performed for other Hamiltonians.

We stress again that only spins which are coupled in the special way discussed earlier,
form Galois systems which have many symmetries and strong properties. General couplings
give R-systems with weaker properties.

18. Discussion

Finite quantum systems where the position and momentum take values in the ring Zq are of
great interest in physics. The phase space of these systems is the toroidal lattice Zq × Zq and
has (in general) a fewer symmetries than the R × R phase space of the harmonic oscillator.
In particular, we highlight the lack of isotropy. Consequently, phase-space methods in finite
systems are less powerful than in the harmonic oscillator.

In this review, we have discussed a special case of finite systems, the Galois quantum
systems, where the position and momentum take values in GF(p�). In this case the phase
space is a finite geometry and has isotropy and Frobenius symmetries. The link between the
axioms and properties of finite geometry and the displacements, symplectic transformations
and Frobenius transformations studied here, requires further study.

Galois quantum systems are comprised of �-component systems, coupled in a special way
which is described by the Hamiltonian of equation (100). We have discussed displacements
and symplectic transformations in these systems. The displacements form the Heisenberg–
Weyl group and the symplectic transformations the Sp(2,GF(p�)) group. Using them we have
shown that the Wigner and Weyl functions have powerful properties and they can be used for
quantum tomography. These are techniques analogous to those in a harmonic oscillator.

The Frobenius symmetry in Galois quantum systems has no analogue in the harmonic
oscillator. Systems with Hamiltonians which commute with the Frobenius symmetry have the
constants of motion given in equations (229) and (230).

To each irreducible polynomial of order d, correspond d Galois conjugates. This can be
viewed as a multivaluedness in Galois theory which can be connected to multivaluedness in
Riemann surfaces. We have introduced an analytic representation in the �-sheeted complex
plane which shows explicitly this connection. In this language Frobenius transformations are
elegantly performed with equation (285) and their cyclic property is embodied in the periodic
structure of the formalism.

As a concluding remark we highlight several points where Galois theory enters into the
quantum mechanical formalism. It is the Fourier transform of equation (73), the position and
momentum of equations (78) and (79) which enter in the Hamiltonian of equation (100), the
symplectic transformation of equation (128) which involves products of Galois numbers, the
Frobenius transformations, etc.

A different but related area which is not reviewed here is the use of p-adic fields in
quantum mechanics [59] and condensed matter [60]. Other works that involves Galois fields
in a quantum context are [61, 62]
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